
Jacopo Baboni Schilingi

JBS-CONSTRAINTS

jbs-constraints
(v 0.1)

January 18, 2010

CONTENTS 1

Contents

1 Start-Here 6

2 0-Multi-PMC 6
2.1 00-Introduction-to-Constraints . 6

2.1.1 Introduction . 6
2.1.2 0-The-Multi-PMC . 6
2.1.3 1-Create-Candidates-for-the-Multi-PMC 7
2.1.4 2-The-Multi-PMC-Rules-Application 8
2.1.5 3-The-Logical-Conflict-and-the-Heuristic-Rules 9
2.1.6 4-A-First-Musical-Example . 11
2.1.7 5-Specific-Candidates . 12
2.1.8 6-Heuristic-Rules-and-No-Random-Reserach 13
2.1.9 7-Heuristic-Rules-and-Weight . 14
2.1.10 8-Heuristic-Rules-and-Several-Weights 15
2.1.11 9-Ergonomic-Disposition . 16

2.2 01-Generic-Rules . 17
2.2.1 Generic-Rules . 17
2.2.2 01-Generic-Rules . 18
2.2.3 02-Generic-Rules-with-Multi-PMC 18
2.2.4 03-Generic-Rules-Candidates . 19
2.2.5 04-Several-No-Repetitions-on-Durations 20
2.2.6 05-Several-No-Repetitions-on-Intervals 21
2.2.7 06-Modulo-X-Repetition . 23
2.2.8 07-Not-Consecutive-Rules . 23
2.2.9 08-Not-Repeated-Element-Sub-Group 24
2.2.10 09-Not-Repeated-List-Sub-Group 25
2.2.11 10-Item-Sub-Group-Member . 26
2.2.12 11-Allowed-Chain-Rules . 27
2.2.13 12-Length-Rules . 28
2.2.14 13-Several-Index-Rules . 29
2.2.15 14-Index-Length-Rule . 30
2.2.16 15-Index-Nth-Rule . 31
2.2.17 16-Index-Applied-Sum-Rule . 32
2.2.18 17-Member-Rules . 33
2.2.19 18-Not-Higher-or-Lower-than-Rules 34
2.2.20 19-Count-Common-Elements-Rule 35
2.2.21 20-Count-Any-Element-Rule . 36

2.3 02-Interval-Rules . 37
2.3.1 Interval-Rules . 37
2.3.2 01-Several-Interval-No-Repetitions 37
2.3.3 02-Several-Allowed-or-Not-Interval-Rules 39
2.3.4 03-No-Consecutive-Equal-Interval-Rules 40
2.3.5 04-Obliged-or-Not-Interval-Chain 41
2.3.6 05-Repeat-Interval . 42

CONTENTS 2

2.3.7 06-Repeat-Resulting-Interval . 43
2.3.8 07-Index-or-Not-Index-Interval 44
2.3.9 08-Not-Bigger-Not-Smaller-Interval 45
2.3.10 09-Resulting-Not-Resulting-Interval 46
2.3.11 10-Jump-Resolution . 47
2.3.12 11-Do-Reach-Do-Not-Reach-That-Interval 48
2.3.13 12-Apply-Interval-Sum . 49
2.3.14 13-Apply-Interval-Global-Sum . 50
2.3.15 14-Not-Complementary-Interval 51
2.3.16 15-Interval-Structure . 52
2.3.17 16-Count-Positive-Negative-Intervals 53

2.4 03-Pitch-Rules . 54
2.4.1 Pitch-Rules . 54
2.4.2 01-Allowed-and-Not-Allowed-Pitches 54
2.4.3 02-Allowed-Pitches-Structure-and-Class 55
2.4.4 03-Not-Allowed-Pitches-Structure-and-Class 57
2.4.5 04-Index-and-Not-Index-Pitch . 58
2.4.6 05-Any-Note-Repeated . 59
2.4.7 06-Count-this-Note-and-Modulo 60
2.4.8 07-Not-Repeated-Modulo-12 . 61
2.4.9 08-Mk-Profile-Pitch . 62
2.4.10 09-Mk-Profile-Pitch-Modulo . 63

2.5 04-Shaping-Rules . 64
2.5.1 Shaping-Rules . 64
2.5.2 01-Ascending-Descending-Rule 64
2.5.3 02-Ascending-Descending-Sub-Group-Rule 65
2.5.4 03-Mk-Fix-Profile-Rule . 66
2.5.5 04-Mk-Profile-Rule . 67
2.5.6 05-Sub-Group-Mk-Profile-Rule 68
2.5.7 06-Direct-Analysis-Rule . 69
2.5.8 07-Energy-Profile-Rule . 70

2.6 05-Pattern-Rules . 71
2.6.1 Shaping-Rules . 71
2.6.2 01-Ptrn-Find-Not-Ptrn-Find-Rule 71
2.6.3 02-Find-this Ptrn-N-Times-Rule 72
2.6.4 03-More-First-Repeated-than-Second 73
2.6.5 04-Repeated-Pattern-Rule . 74
2.6.6 05-Always-More-Little-Included-Rule 75

2.7 06-Distance-Rules . 76
2.7.1 Distance-Rules . 76
2.7.2 01-Distance-Rule . 76
2.7.3 02-Dynamic-Distance-Rule . 77

2.8 07-Structure-Rules . 78
2.8.1 Structure-Rules . 78
2.8.2 01-Mk-Symbol-Structure-Rule . 79

CONTENTS 3

2.8.3 02-Find-Apply-Global-and-Approx-Sum-Rule 79
2.8.4 03-Length-Sub-Group-Applied-Sum-Rule 80
2.8.5 04-Structured-Order-Sum-Rule 81
2.8.6 05-Count-Positive-and-Negative-Rule 82
2.8.7 06-No-Consecutive-Rests-or-Pulses-Rule 83
2.8.8 07-Alternating-Positive-Negative-Rule 84
2.8.9 08-Alternating-plus-minus-First-or-Last-Elmt-Rule 85
2.8.10 09-Structure-Identity-Rule . 86

2.9 08-Matrix-Rules . 87
2.9.1 Matrix-Rules . 87
2.9.2 01-Mk-Latin-Matrix-Rule . 87
2.9.3 02-Chain-Common-Element-Lists-Rule 88
2.9.4 03-Chain-More-Little-Common-Rule 89

3 0-Multi-Score-PMC 91
3.1 00-Introduction-to-Score-PMC . 91

3.1.1 Introduction . 91
3.1.2 1-The-Rules-for-Multi-Score-PMC 91
3.1.3 2-The-Multi-Score-PMC . 92
3.1.4 3-Multi-Score-PMC-Stantdard-Patch 93
3.1.5 4-S-PMC-Rule-Voice-Attribution 94
3.1.6 5-S-PMC-Rule-Expressions-Recognition 95
3.1.7 6-Logical-Conflict-between-Rules 96

3.2 01-Melodic-Rules . 97
3.2.1 1-Generic-Poly-Rules . 97

3.2.1.1 1-Several-Index-Rules 97
3.2.1.2 2-Not-Higher-or-Lower-Rules 98
3.2.1.3 3-No-Lcl-Repetition-Rule 99
3.2.1.4 4-N-Ascending-N-Descending-Rules 100

3.2.2 2-Intervals-Poly-Rules . 101
3.2.2.1 1-Allowed-Not-Allowed-Interval-Rules 101
3.2.2.2 2-Interval-Bigger-Smaller-Rules 102
3.2.2.3 3-No-Reached-Interval-Rule 103

3.2.3 3-Pitch-Poly-Rules . 104
3.2.3.1 1-Allowed-Not-Allowed-Pitch-Rule 104
3.2.3.2 2-Allowed-Not-Allowed-Pitch-Class-Rule . . . 105

3.2.4 4-Resolution-Poly-Rules . 106
3.2.4.1 1-Tone-Not-Tone-Resolution-Rule 106
3.2.4.2 2-Jump-Resolution-Rule 107

3.2.5 5-Shaping-Poly-Rules . 108
3.2.5.1 1-Given-Voice-Rule 108
3.2.5.2 2-Mk-Profile-Rule 109

3.3 02-Harmonic-Rules . 110
3.3.1 01-Index-Allowed-Harmony . 110
3.3.2 02-Allowed-&-Not-Harmony-in-Given-Measures 111
3.3.3 03-Allowed-&-Not-Harmony-on-Beat 112

CONTENTS 4

3.3.4 04-Allowed-&-Not-Harmonic-Interval 113
3.3.5 05-All-Notes-Included . 114
3.3.6 06-Index-All-Notes-Included . 115
3.3.7 07-All-Notes-Included-on-Beat 116
3.3.8 08-Forbidden-Inversion . 117
3.3.9 09-Preferred-Duplicates . 118
3.3.10 10-Allowed-Harmony . 119
3.3.11 11-Chord-Succession . 120
3.3.12 12-Allowed-Interval-between-2-Parts 121
3.3.13 13-Not-Allowed-Interval-between-2-Parts 122
3.3.14 14-To-Be-Done . 123
3.3.15 15-Smaller-and-Bigger-Int-between-Parts 124
3.3.16 16-Forbidden-Interval-Relation 125
3.3.17 17-Not-N-Consecutive-Equal-Intervals 126
3.3.18 18-Not-N-Same-Directions . 127
3.3.19 BPF-Delay . 129

3.4 03-Voice-Leading-Rules . 129
3.4.1 01-No-Crossing-Voice-Rule . 129
3.4.2 02-No-Open-Parallel-Rule . 130
3.4.3 03-Forbidden-Succession-Rule . 131
3.4.4 04-Hidden-Parallel-Rule . 132

3.5 04-Create-Expressions-Tools . 133
3.5.1 01-Create-Individual-Expression 133
3.5.2 02-Create-Group-Expression . 134
3.5.3 03-Create-Face-Value-Expression 135
3.5.4 04-Create-Expression-on-Note-Sequence 136
3.5.5 05-Create-Expression-on-Chord-Sequence 137
3.5.6 06-Create-Expression-on-Grace-Note-Sequence 138
3.5.7 07-Create-Expression-on-Main-Beat 139
3.5.8 08-Create-Expression-Not-on-Main-Beat 140
3.5.9 09-Create-Expression-for-Beats 141
3.5.10 10-Create-Expression-for-Measures 142

4 0-Utils 143
4.1 Utils . 143
4.2 01-Collect-Rules . 143
4.3 02-Collect-Script-Rules . 144
4.4 03-Make-?1-and-Make-I1 . 145
4.5 04-Make-Candidates . 146
4.6 05-Mk-Chain-Candidates . 147
4.7 06-Make-Pitch-Candidates . 148
4.8 07-Logic-or-Condition . 149
4.9 08-Pitch-Extract-from-Score-Editor . 150

CONTENTS 5

5 0-Examples 151
5.1 01-Collect-Other-Rules . 151

5.1.1 Collect-Other-Rules-01 . 151
5.1.2 Collect-Other-Rules-02 . 152
5.1.3 Collect-Other-Rules-03 . 153

5.2 02-Contrepoint . 155
5.2.1 Counterpoint . 155
5.2.2 Counterpoint-01 . 155
5.2.3 Counterpoint-02 . 156
5.2.4 Counterpoint-03 . 157
5.2.5 Counterpoint-04 . 158
5.2.6 Counterpoint-05 . 159
5.2.7 Counterpoint-06 . 160
5.2.8 Counterpoint-07 . 161
5.2.9 Counterpoint-08 . 162
5.2.10 Counterpoint-09 . 163
5.2.11 Counterpoint-10 . 164

5.3 03-Special-Combinations . 165
5.3.1 Always-3-Given-Elements-01 . 165
5.3.2 Always-3-Given-Elements-02 . 166
5.3.3 Always-3-Given-Elements-03 . 167

A Box Reference 169

Box Index 208

1. START-HERE 6

1 Start-Here

This documentation has been written by Jacopo Baboni Schilingi and Julien Vincenot.
This is a library to control the Multi-PMC and the Multi-Score-PMC functions of PWGL.

(1) Multi-PMC

(2) Multi-Score-PMC

(3) Utils

(4) Examples

This library is the result of many years of work with Mikael Laurson, Mika Kuuskankare
and Kilian Sprotte. All the functions or methods I formalized here are based on the syn-
tax of Constraints done by Mikael Laurson. Please let me avoid any misunderstanding :
this library is called JBS-Constraints exactly because it is my own way of using Mikael
Laurson syntax to generate rules. That does not mean at all that the method I suggest
is the only one. I developed this method because of my own hyper-systemic theory
approach and because practice showed me that this way is the best for ME. Study also
the tutorial of Mikael Laurson concerning constraints, because it might happen that my
method is not the one you are looking for.
Please, if you find some bugs or anomalies, write directly to me at jbs@baboni-
schilingi.com.

2 0-Multi-PMC

2.1 00-Introduction-to-Constraints

2.1.1 Introduction

This chapter is dedicated to explain how the Multi-PMC works. Please follow these
tutorials from the beginning to the end.

2.1.2 0-The-Multi-PMC

1.00.0 - THE-MULTI-PMC
This function [1] is like an engine that finds out the solutions corresponding to a given
problem. Imagine that we want to find all the permutations of a given list of 5 letters
of the alphabet (a b c d e).
Just learn this :
In [a] you have to put a list of variables that will constitute the search space where the
engine will look for the solution.
In [b] you have to put the rules called true/false : those rules will be applied without
any tolerance.
In [c] you will put the heuristic rules : those rules will only be applied as much as
possible.

2.1 00-Introduction-to-Constraints 7

In [d] you chose if you look for the solution following the order of the candidates - if
you set NIL () - or in a random order - if you set T.
In [e] you decide how many solutions you are looking for: from 1 to :all.

Multi-PMC

(4* ((0_3)))

() () ()

T 1 ()

(E)

a --->

(E)

b --->

(E)

d --->
(E)

<--- c

(E)

^
e

11

Figure 1: 1-00-0-The-Multi-PMC

2.1.3 1-Create-Candidates-for-the-Multi-PMC

1.00.1 - CREATE-CANDIDATES-FOR-THE-MULTI-PMC
Let (a b c d e) be your candidates [a]. In order to make the Multi-PMC look for one
or all solutions, you have to duplicate your list of candidates for a number of times [b]
to produce a list of variables (here we create 5 variables). The number of variables
determines the length of the solutions.
Please, put 5 in [b] and evaluate the Multi-PMC [1]. A random solution occurs any time
you evaluate this box.
Now change the number in [b]. If you put 2, for instance, your result will have only
two elements. If you put 11, your result will have eleven elements chosen among (a b c
d e).
Then change the menu [c] and choose the NIL position (). If you evaluate the Multi-
PMC now you will see that the solution will have only a list of -A- with a length define

2.1 00-Introduction-to-Constraints 8

in [b].
Please change the value of the input [d], keeping the input [c] in the nil position ().
You will obtain the amount of solutions that you defined in [d]. For instance, if [d] is
equal to 4, you will have the following result : ((A A A A D) (A A A A C) (A A A A B) (A
A A A A)). That means that the first result is (A A A A A), the second (A A A A B), the
third (A A A A C), etc. The solutions are pushed from the first to the last.
Now, if you put again the [c] input in the T mode, you will have a number [d] of random
solutions, each of them having the same length, defined in [b].

Multi-PMC

search-space

() () ()

T 1 ()

(E)

a --->

(E)

b --->

(E)

c --->

(E)

^
d

value-box

(a b c d e)

pwgl-repeat

5 patch

11

Figure 2: 1-00-1-Create-candidates-for-the-Multi-PMC

2.1.4 2-The-Multi-PMC-Rules-Application

1.00.2 - THE-MULTI-PMC-RULES-APPLICATION
Here the goal is to create one or all permutations of the (a b c d e) candidates, having
the letter -A- always in the third position.
To do this you need a first concept that is called NO-REPETITION [e]. This function is
in reality a rule for the Multi-PMC : it forbids the Multi-PMC to have any repetition of
-A-, or -B-, or -C-, etc., inside the solution.
So in [a] you put your candidates. In [b] you define how many variables your solution

2.1 00-Introduction-to-Constraints 9

will be constituted with. In [c] if you set the T mode to ask for a random research. Put
1 in [d], in order to obtain only one solution for each evaluation.
The function [f] is another rule for the Multi-PMC [1]. This rule obliges the Multi-PMC
to produce a result with the letter -A- in its third place. The COLLECT-RULES box [g] is
a collector for all the rules you need.
Now evaluate many times the Multi-PMC and see the results in the PWGL output : each
time you will produce different results keeping the letter -A- always in the third position.

Multi-PMC

search-space

rules () ()

T 1 ()

(E)

a --->

(E)

b --->

(E)

c --->

(E)

^
d

value-box

(a b c d e)

pwgl-repeat

5 patch

collect-rules

r1

more-rules

(E)

e --->

no-repetition-rule

pmc

true/false 0

index-rule

pmc

i3 a

true/false 0

(E)

^
f

(E)

<--- g

11

Figure 3: 1-00-2-The-Multi-PMC-rules-application

2.1.5 3-The-Logical-Conflict-and-the-Heuristic-Rules

1.00.3 - THE-MULTI-PMC-LOGICAL-CONFLICT-AND-THE-HEURISTIC-RULES
Look to this problem. This patch is identical to the 1.00.2, excepted that the input [b]
is set to the value 6. If you evaluate the Multi-PMC [1] you do not obtain any solution.
Why? Because you are asking the engine to find a solution of 6 elements with only 5
candidates (a b c d e) and without any repetition. It means that you are producing a
logical conflict : this is impossible to have a solution of 6 different elements using only
5 different variables.
To solve this problem you have to imagine that each rule set in the true/false mode is

2.1 00-Introduction-to-Constraints 10

applied strictly. If no solution satisfies the rules set in the COLLECT-RULES [f], there
can’t be any result. For this reason chose, in the menu of the box NO-REPETITION-
RULE [h], the heuristic mode. Put in the [i] input of the NO-REPETITION-RULE a value
bigger than 1. This value is the weight of application of this rule. Then the Multi-PMC
outputs solutions again. (Note : For this moment, please, do not ask more, just do what
I suggest. I will explain in the next steps the concept of weight.)
To resume : In [a] you put the candidates that constitute the solution to find. In [b] you
define the length of the solution, in this case a length of 6 elements.
The [h] input is set in the heuristic mode with a weight [i] bigger than 1. This means
that the NO-REPETITION-RULE will be applied as much as possible (heuristically). The
[g] rule, as set in the true/false mode, obliges the solution to have -A- in the third place.
The [f] function collects the heuristic rule and the true/false rule. [c] is the input of the
Multi-PMC accepting the true/false rules coming out of the left input of the COLLECT-
RULES [f]. [d] is the input of the Multi-PMC accepting the heuristic rules coming out
of the right input of the COLLECT-RULES [f]. The value 1 put in [e] asks for only one
solution at a time.
OBVIOUSLY, as the NO-REPETITION-RULE is applied as much as possible, some repeti-
tions appear.
For the moment REMEMBER that a true/false rule is applied strictly. If one true/false
rule can not be applied (logical conflict) no solution is possible. A heuristic rule is
applied as much as possible, depending on it weight.

2.1 00-Introduction-to-Constraints 11

Multi-PMC

search-space

rules () heur-rules

T 1 ()

(E)

a --->

(E)

b --->

(E)

<--- d

(E)

^
e

value-box

(a b c d e)

pwgl-repeat

6 patch

collect-rules

r1

more-rules

no-repetition-rule

pmc

true/false 1

index-rule

pmc

i3 a

true/false 0

(E)

^
g

(E)

<--- f

(E)

<--- i

(E)

c --->

(E)

^
h

11

Figure 4: 1-00-3-The-logical-conflict-and-the-heuristic-rules

2.1.6 4-A-First-Musical-Example

1.00.4 - A-FIRST-MUSICAL-EXAMPLE
In [1] you put the candidates you want the solution to be constituted with, in this case
a C-major scale. Put the value 5 in [2] in order to produce a solution of length 5.
[b] is a switch : you can choose by clicking in the left input not to apply the associated
rule. If you click on the right input you make the correlated rule active.
[3] is a rule concerning intervals. Here it admits only intervals equals to a minor and
major second and a major third. Please note that intervals are expressed in semitones :
1 is a minor second, 2 a major second, 3 a minor third, 4 a major third and so on.
[4] is, as we have already seen, a rule concerning the place of an element. In this case
we ask the Multi-PMC to keep always the E note (64) in the third place.
[5] is the rule that forbids to have any repetition of any note in the result.
[6] is the collector of rules. Please OBSERV that the order of the input of the rules is
irrelevant.
[7] is the Multi-PMC set in the T mode for a random research and looking for only one
solution at a time.

2.1 00-Introduction-to-Constraints 12

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

Chord-Editor

E

&
?

w w w w w w w

chord pitches

Chord-Editor

E

&
?

w w w w w

chord pitches

11

22

collect-rules

r1

()

more-rules

()

()

more-rules

()

first

no-repetition-rule

pmc

true/false 0

first

index-rule

pmc

i3 64

true/false 0

first

allowed-intervals-rule

pmc

(1 2 4) :ABSOLUTE

true/false 0

33

44
55

66

77

88

(E)

a --->

(E)

b --->

(E)

b --->
(E)

b --->

Figure 5: 1-00-4-A-first-musical-example

2.1.7 5-Specific-Candidates

1.00.5 - SPECIFIC-CANDIDATES
The values repeated several times, as we have seen before, are duplicated in order to
define a search space for the Multi-PMC. We call these values CANDIDATES. Using the
PWGL-REPEAT box you duplicates the candidates in order to create a certain amount of
variables.
Sometimes you may need to define the variables not as duplicates of a given group of
candidates, but as several subgroups. In this patch you can see how to do it.
[1], [2], [3], [4] and [5] are different groups of candidates that will correspond to
different variables. The Multi-PMC is set to look randomly for research and to output
only one solution for each evaluation. Please OBSERV that in [5] only the C (48 in midi
note) is defined. So in this case the fifth element of any solution will be always this C
(48 in midi note).
Please evaluate the Multi-PMC many time and look at the results. This way of preparing
specific candidates optimizes the research for the Multi-PMC.

2.1 00-Introduction-to-Constraints 13

Multi-PMC

search-space

() () ()

T 1 ()

Chord-Editor

E

&
?

w w w w w

chord pitches

Chord-Editor

E

&
?

w
w# w

w# w

chord pitches

Chord-Editor

E

&
?

w# w# w# w#

chord pitches

Chord-Editor

E

&
?

w w w

chord pitches

Chord-Editor

E

&
? w# w#

chord pitches

Chord-Editor

E

&
? w

chord pitches

list

argument

args

args

args

args

11

22

33
44

55

66 77

Figure 6: 1-00-5-Specific-candidates

2.1.8 6-Heuristic-Rules-and-No-Random-Reserach

1.00.6 - HEURISTIC-RULES-AND-NO-RANDOM-RESEARCH
Now I can explain you the notion of weight for the heuristic rules. You have to imagine
the heuristic rules as a kind of wish. If we stay in this metaphor the concept will be easy
to understand.
In [1] I have put a chromatic scale from midi note 60 to 71. In [2] I define how much
notes will constitute my result.
[3] is a rule of shaping set in the heuristic mode with a weight of 1. We will see later
in details, but for now imagine just know that this rule obliges the Multi-PMC to find a
solution following as much as possible the shape designed in the 2D-EDITOR [4]. Here
the NUM-BOX [2] defines also how much points will sample the 2D-EDITOR (or the
BPF curve, in other words).
If you evaluate the Multi-PMC [6] you will see that, despite the fact that it is set in T
mode (for a random research), the solutions [7] are always the same. That is because
the heuristic rules re-dispose the candidates in an order that is set by the given rule.
For the moment, please, change the value in [2] using for instance the value 6 or 9 or
11 or 13, etc. You will see that all this results are stable : in other words, if you evaluate

2.1 00-Introduction-to-Constraints 14

many times with the same number set in [2] the solution does not change. They follow
as much as possible the profile entered in the 2D-EDITOR.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

collect-rules

nil

()

()

()

()

()

()

more-rules

()

()

Chord-Editor

E

&
?

w w# w w# w w w# w w# w w# w

chord pitches

Chord-Editor

E

&
?

w w w# w

chord pitches

mk-profile-rule

pmc

60 71

steps profile

heuristic 1
num-box

4

2D-Editor

Eobjectsactive

11

22

33

44
55

66

77

Figure 7: 1-00-6-Heuristic-rules-and-no-random-reserach

2.1.9 7-Heuristic-Rules-and-Weight

1.00.7 - HEURISTIC-RULES-AND-WEIGHTS
Now look at this patch. I have just added the NO-REPETITION-RULE [5] in the heuristic
mode. Please give it a weight of 1.
The rest of the patch is equal to the previous (1.00.6). Evaluate the CHORD-EDITOR
[8] and see what happens. The solutions you obtain are still not random but at the same
time they try in the same time to avoid repetitions and to follow as much as possible
the given profile.
Please, change the value of the weight [a] of the NO-REPETITION-RULE [5]. Try to put
1, then 2, then 3 and so on to 5. Take the time to evaluate many time the Multi-PMC
with each of these values. You will see that from 1 to 4 the solutions change less and
less. When the weight [a] of the NO-REPETITION-RULE is set to 5, the solution seems
to be fixed. Between the two wishes (to have a solution as close as possible to the
given profile [3], and not to have any repetition [5]) the weights, to keep the metaphor,

2.1 00-Introduction-to-Constraints 15

define which wish is stronger.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

collect-rules

r1

()

()

()

()

()

()

()

()

more-rules

Chord-Editor

E

&
?

w w# w w# w w w# w w# w w# w

chord pitches

Chord-Editor

E

&
?

w w w w w# w w# wn wn w w w

chord pitches

mk-profile-rule

pmc

60 71

steps profile

heuristic 1

num-box

12

2D-Editor

Eobjectsactive

11

22

33

44

55
66

77

88

no-repetition-rule

pmc

heuristic 0

(E)

<--- a

Figure 8: 1-00-7-Heuristic-rules-and-weight

2.1.10 8-Heuristic-Rules-and-Several-Weights

1.00.8 - HEURISTIC-RULES-AND-SEVERAL-WEIGHTS
Now look at this patch. The only difference from the previous (1.00.7) is the ALLOWED-
INTERVALS-RULE [5]. This rules is set in the heuristic mode (as all the others) with a
weight of 1 [a] (as the MK-FIX-PROFILE-RULE [3], and the NO-REPETITION-RULE
[6]).
Evaluate many time the Multi-PMC and see that the results change a little. Then in-
crease the weight [a] of the ALLOWED-INTERVALS-RULES [5]. Evaluate the Multi-
PMC several times and look at the results. Then put the weight [a] of the ALLOWED-
INTERVALS-RULES [5] to 1 and change the weight [b] of the NO-REPETITION-RULE
[6]. Look again at the results.
Belonging to the weights you put the solutions are more and more close to a chosen

2.1 00-Introduction-to-Constraints 16

solution that try to balance different wishes. In this way no logical conflict is possible.
In the heuristic mode, a solution is always possible.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

collect-rules

r1

()

more-rules

()

()

()

()

()

()

more-rules

Chord-Editor

E

&
?

w w# w w# w w w# w w# w w# w

chord pitches

Chord-Editor

E

&
?

w w w# w w# w w w w# w w# w

chord pitches

no-repetition-rule

pmc

heuristic 1

allowed-intervals-rule

pmc

(4 7) :ABSOLUTE

heuristic 1

mk-profile-rule

pmc

60 71

steps profile

heuristic 1

num-box

12

2D-Editor

Eobjectsactive

11

22 33

44

55

66

77

88

99

(E)

<--- a

(E)

<--- b

Figure 9: 1-00-8-Heuristic-rules-and-several-weights

2.1.11 9-Ergonomic-Disposition

1.00.9 - ERGONOMIC-DISPOSITION
When you start using the Multi-PMC very soon you will need to apply many rules at the
same time. For this reason, and to better understand the following tutorials, we suggest
this ergonomic disposition.
You can read it in the following way :
[1] is a fast way to generate a chromatic scale using the ARITHM-SER.
The MK-PITCH-CANDIDATES [2] is a tools to transpose quickly pitches into several
octaves. The CHORD-EDITOR [3] it is just to see the range of the candidates.
The PWGL-REPEAT [4] creates as many groups of chromatic scales as the length of the
solution you want to find. The NUM-BOX [5] needs to synchronize the length of the
solution with some rules put inside the abstraction [6] containing the rules. Please open
this abstraction and see how the rules are disposed.

2.2 01-Generic-Rules 17

This is just a suggestion dictated by experience. For beginners : use this disposition in
order to read well what you are doing.

Rules

A

num-box

13

mk-pitch-candidates

pitch 2

arithm-ser

60

1

71

Chord-Editor

E

&
? ˙˙# ˙˙# ˙˙˙# ˙ ˙# ˙˙# ˙˙˙# ˙ ˙# ˙˙ ˙# ˙ ˙# ˙ ˙# ˙˙ ˙# ˙ ˙# ˙˙˙# ˙ ˙# ˙˙# ˙˙˙# ˙ ˙# ˙˙ ˙# ˙ ˙# ˙ ˙# ˙˙ ˙# ˙ ˙# ˙˙˙# ˙ ˙# ˙˙# ˙

chord pitches

Multi-PMC

search-space

rules () heur-rules

T 1 ()

Chord-Editor

E

&
?

w# wn w# wn w# w w w w# w w w w#

chord pitches

pwgl-repeat

count patch

11

22

33
44

55

66

77

88

Figure 10: 1-00-9-Ergonomic-disposition

2.2 01-Generic-Rules

2.2.1 Generic-Rules

All the functions grouped here can be applied on any kind of parameters. That is why
they are called generic.
Please note that often in this library you can find different rules, from different cate-
gories and menus, based on the same code or a really close one. These rules are redun-
dant on purpose, in order to make easier your understanding of the musical concepts
implemented.
You must understand that most of the rules described above are not necessarily dedi-
cated to a single use. Most of them are generalizable to different musical parameters.
The numerous patches in this tutorial only give you a partial sight of their possibilities.

2.2 01-Generic-Rules 18

2.2.2 01-Generic-Rules

1.01.01 - GENERIC-RULES
Each box [1] of this library has always at least two inputs. On [a] menu you can
choose if you want to apply a rule in true/false mode or in heuristic one. The second
is operational only when you are in the heuristic mode : it indicates the weight of
application of the rule.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

no-local-repetition-rule

pmc

true/false 0

(E)

a --->

(E)

<--- b

11

Figure 11: 1-01-01-generic-rules

2.2.3 02-Generic-Rules-with-Multi-PMC

1.01.02 - GENERIC-RULES-WITH-MULTI-PMC
The way to use all the rules [1] is to connect them obligatory to the COLLECT-RULES
box you find in the Utils menu. Please connect always the left output [c] in the ’rules’
input of the Multi-PMC and the right one [d] in the ’heur-rules’ input of the same box.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of

2.2 01-Generic-Rules 19

weights to these rules.

no-local-repetition-rule

pmc

true/false 0

(E)

a --->

(E)

<--- b

collect-rules

r1

Multi-PMC

(4* ((0_3)))

rules () heur-rules

T 1 ()(E)

c --->

(E)

<--- d

11

Figure 12: 1-01-02-generic-rules-with-multi-pmc

2.2.4 03-Generic-Rules-Candidates

1.01.03 - GENERIC-RULES-CANDIDATES
In [b] put a scale (the candidates) and duplicate it with the PWGL-REPEAT [c] box in or-
der to define how many elements (the variables) will constitute the solutions. Evaluate
[d] to look at the result in musical format.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules [1] are initialized on
purpose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 20

no-local-repetition-rule

pmc

true/false 0

(E)

a --->

(E)

<--- b

collect-rules

r1

Multi-PMC

search-space

rules () heur-rules

T 1 ()

(E)

c --->

Chord-Editor

E

&
?

˙˙˙˙˙˙˙

chord pitches

pwgl-repeat

6 patch

Chord-Editor

E

&
?

w w w w w w

chord pitches

(E)

d --->

11

Figure 13: 1-01-03-generic-rules-candidates

2.2.5 04-Several-No-Repetitions-on-Durations

1.01.04 - SEVERAL-NO-REPETITIONS-ON-DURATIONS
This patch shows you how the functions NO-REPETITION, NO-LOCAL-REPETITION,
NO-SPACED-REPETITION, etc. work.
In [a] you put, in this case, some ratio values of durations : remember that -1/4 is
a quarter rest and 1/4 is a quarter note value. In [c] you use the PWGL-REPEAT to
turn the candidates into several variables. For [d], please look at the tutorial of Kilian
Sprotte in the library KSQuant. Evaluate [e] and look at the results.
Open the ’Rules’ abstraction [b] :
Look at [f]. This is a SWITCH. If the first input is chosen the related rule is not applied.
So, click on the right input [g] so the rule is operational.
[1], as we have already seen, is a rule forbidding repetition of any element all along a
solution.
[2] forbids only repetitions for two consecutive elements.
[3] is pretty much like the contrary of NO-LOCAL-REPETITION. The ’candidates’ input
stands for a range between any element in the solution and another. For instance, ”any
element and the second after it” corresponds to the input (1 3). The rule makes sure

2.2 01-Generic-Rules 21

that any element in the solution won’t be repeated by the second element after it (?3
after ?1).
[4] acts the same that NO-REPETITION-RULE, excepted that it forbids repetitions of
absolute values. This is particularly useful here, because the rule will not make the
difference between note values and rest values.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

(E)

a --->

(E)

<--- b

Multi-PMC

search-space

rules () heur-rules

T 1 ()
(E)

c --->

pwgl-repeat

5 patch

(E)

d --->

Rules

A

value-box

(-1/16 -1/8 -1/4 1/4 1/8 1/16)

flat

Score-Editor

E

&
1

44 ‰ ‰ œ œ œ œ ‰j
q = 60

P1

score pitches rtms/times

pitches-durs2simple

Chord-Editor

E

&
?

w w w w w

chord pitches

simple2score

simple

:time-signatures (4 4)

:metronomes (4 60)

:scale 1

:max-div 8
(E)

d --->

(E)

e --->

Figure 14: 1-01-04-several-no-repetitions-on-durations

2.2.6 05-Several-No-Repetitions-on-Intervals

1.01.05 - SEVERAL-NO-REPETITIONS-ON-INTERVALS
This patch shows you how the functions NO-REPETITION, NO-LOCAL-REPETITION,
NO-SPACED-REPETITION, etc. work.
In [a] you put, in this case, some interval values : remember that -1 is a descending
minor second and 2 is an ascending major second. In [c] you use the PWGL-REPEAT
to turn the candidates into several variables. The DX->X function [d] rebuilds the
sequence of notes from a starting point (60) with the sequence of intervals. Evaluate

2.2 01-Generic-Rules 22

[e] and look at the results.
Open the ’Rules’ abstraction [b] :
Look at [f]. This is a SWITCH. If the first input is chosen the related rule is not applied.
So, click on the right input [g] so the rule is operational.
[1], as we have already seen, is a rule forbidding repetition of any element all along a
solution.
[2] forbids only repetitions for two consecutive elements.
[3] is pretty much like the contrary of NO-LOCAL-REPETITION. The ’candidates’ input
stands for a range between any element in the solution and another. For instance, ”any
element and the second after it” corresponds to the input (1 3). The rule makes sure
that any element in the solution won’t be repeated by the second element after it (?3
after ?1).
[4] acts the same that NO-REPETITION-RULE, excepted that it forbids repetitions of
absolute values. This is particularly useful here, because the rule will not make the
difference between ascending and descending intervals.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

(E)

a --->

(E)

<--- b

Multi-PMC

search-space

rules () heur-rules

T 1 ()
(E)

c --->

pwgl-repeat

5 patch

Chord-Editor

E

&
?

w w# w# wn w w

chord pitches

(E)

d --->

value-box

(-5 -4 -3 -2 -1 1 2 3 4 5)

flat

ldx->x

60 dxs

(E)

e --->

Rules

A

Figure 15: 1-01-05-several-no-repetitions-on-intervals

2.2 01-Generic-Rules 23

2.2.7 06-Modulo-X-Repetition

1.01.06 - MODULO-X-REPETITION-RULES
MODULO-X-REPETION-RULE [1] allows only repetitions of values having the modulo
given in the ’modulo’ input.
NOT-MODULO-X-REPETITION-RULE [2] forbids any repetition of a value having the
modulo given in the ’modulo’ input.
NOT-MODULO-X-LOCAL-REPETITION-RULE [3] does pretty much the same, except it
forbids only consecutive repetitions of a modulo value.
Change the SWITCH in order to use or not the modulo-repetition-rule.
You can control the result by evaluating the G-MOD function [3] with the proper ’mod’
[a]value. Every modulo value should be (normally...) turned into 0.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

10 patch

modulo-x-repetition-rule

pmc

3 true/false

0

arithm-ser

1

1

12

not-modulo-x-repetition-rule

pmc

3 true/false

0

11 22

g-mod

l1? 3

33

(E)

<--- a

first

list

not-modulo-x-local-repetition-rule

pmc

3 heuristic

1

33

Figure 16: 1-01-06-modulo-x-repetition

2.2.8 07-Not-Consecutive-Rules

1.01.07 - NOT-CONSECUTIVE-RULES

2.2 01-Generic-Rules 24

This patch shows how to avoid some kinds of sequence. For instance:
NOT-CONSECUTIVE-NUMBER-RULE [1] does not allow any value to be followed by its
consecutive value in the list of candidates. For instance, if the candidates are (1 2 3 4
5), the Multi-PMC cannot produce -1- followed by -2-. Sequences as -1- followed by -3-,
-4- or -5- will be preferred.
NOT-CONSECUTIVE-ASCENDING-RULE [2] does not allow more ascending values than
the value indicated in how-many.
NOT-CONSECUTIVE-EQUAL-RULE [3] does not allow more equal values than the values
indicated in how-many.
NOT-CONSECUTIVE-DESCENDING-RULE [4] does not allow more descending values
than the value indicated in how-many.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

10 patch

arithm-ser

0

1

12

not-consecutive-number-rule

pmc

true/false 0

not-consecutive-ascending-rule

pmc

3 true/false

0

not-consecutive-descending-rule

pmc

3 true/false

0

not-consecutive-equal-rule

pmc

3 true/false

0

11

22

33

44

Figure 17: 1-01-07-not-consecutive-rules

2.2.9 08-Not-Repeated-Element-Sub-Group

1.01.08 - NOT-REPEATED-ELEMENT-SUB-GROUP

2.2 01-Generic-Rules 25

This rule [1] does not allow any repetition of an element into a given sub-group. The
’sub-group-length’ input determines the length of the desired sub-group.
In [a] put the length of the sub-group. Now evaluate GROUP-LIST [b] and look at the
result. Inside each sub-group of length 3 there is no repeated element.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

12 patch

arithm-ser

0

1

6

flat

l length

arg1 pwgl-repeat

count patch

num-box

3

(E)

<--- b

(E)

a --->

group-list

jbs-cmi

list groups

stop

not-repeated-element-sub-group-rule

pmc

sub-group-lengthheuristic

1
11

Figure 18: 1-01-08-not-repeated-element-sub-group

2.2.10 09-Not-Repeated-List-Sub-Group

1.01.09 - NOT-REPEATED-LIST-SUB-GROUP
NOT-REPEATED-LIST-SUB-GROUP-RULE [3] does not allow any repeated list into a
given sub-group of a given length.
In [1] you define a list of lists as candidates. In [2] you set how many [a] elements
have to be inside the solution.
Here we are : NOT-REPEATED-LIST-SUB-GROUP-RULE [3] needs to know the length of
the sub-groups inside which you do not accept any repeated list. So in [b] we set 4 :
that means that in any sub-group of four lists, there will be no repetition.

2.2 01-Generic-Rules 26

Please, evaluate the GROUP-LIST box [4] (Attention, this function comes from Profile
library) and look at the results. In any group of length 4 there is no repeated list.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

not-repeated-list-sub-group-rule

pmc

4 true/false

0

pwgl-repeat

12 patch

value-box

((a b c) (d e f) (d f r) (e r t) (t r e) (s d q) (e z a))

group-list

list (4 4 4 4)

:stop

first

list

11

22

33

(E)

b--->

(E)

a--->

44

Figure 19: 1-01-09-not-repeated-list-sub-group

2.2.11 10-Item-Sub-Group-Member

1.01.10 - ITEM-SUB-GROUP-MEMBER
This rule [1] obliges the solution to be constituted by sub-groups (with length deter-
mined by ’sub-group-length’) having in their index [a] position the possible elements
put in [b].
Please evaluate the GROUP-LIST [c] and look at the result. At the beginning of each
sub-group either a or b are allowed.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 27

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

flat

l

pwgl-repeat

20 patch

item-sub-group-member-rule

pmc

5 1

(a b) true/false

0

group-list

list (5 5 5 5)

:stop

value-box

(a b c d e f g)

(E)

<--- a

(E)

b --->

(E)

<--- c

11

Figure 20: 1-01-10-item-sub-group-member

2.2.12 11-Allowed-Chain-Rules

1.01.11 - ALLOWED-CHAIN-RULES
ALLOWED-CHAIN-RULE [1] obliges the element set in [a] to be followed by one of the
elements set in [b]. The elements in [b] are chosen randomly.
NOT-ALLOWED-CHAIN-RULE [2] does the opposite.
Evaluate the CHORD-EDITOR [c] and see how the first C note is followed either by a
C-sharp (midi note 61) note or by a B (midi note 71).
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 28

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

more-rules

flat

l

pwgl-repeat

7 patch

(E)

<--- b

(E)

a --->

(E)

c --->

(E)

a --->

(E)

<--- b

arithm-ser

60

1

72

Chord-Editor

E

&
?

w w w# w wn w w

chord pitches

index-rule

pmc

i1 60

true/false 0

11 22
allowed-chain-rule

pmc

60 (61 71)

true/false 0

not-allowed-chain-rule

pmc

60 (61 71)

true/false 0

Figure 21: 1-01-11-allowed-chain-rules

2.2.13 12-Length-Rules

1.01.12 - LENGTH-RULES
Here are three different rules controlling the length of sub-lists belonging to a solution.
Please open the abstraction ’Candidates’ [a]. It generates 16 [d] random groups having
random lengths with random notes. (Please keep it locked in order to obtain a result
for each top-evaluation.)
Select with the PWGL-SWITCH [b] which rule you want to apply.
[1] NOT-CONSECUTIVE-EQUAL-LENGTH-RULE With this rule, the length of two con-
secutive groups cannot be equal. It acts pretty much like the NO-LOCAL-REPETITION-
RULE.
[2] NOT-LENGTH-REPETITION-RULE With this rule, no repetition of sub-group equal
length is allowed in the whole solution. This one could be compared with the NO-
REPETITION-RULE.
[3] LENGTH-SUB-GROUP-RULE This rule obliges the sub-solutions to have a length
accordingly to the list put in lengths. The list put in length has to be a bpf in the format
2D-EDITOR.

2.2 01-Generic-Rules 29

You can control the results by evaluating both the Score-Editor or the ’g-length’ abstrac-
tion. [4]
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

(E)

b --->

(E)

a --->

11

22

not-consecutive-equal-length-rule

pmc

true/false 0

not-length-repetition-rule

pmc

true/false 0

Candidates

A

pwgl-repeat

4 patch

first

list

Score-Editor

E

&

00:00 00:01 00:02

œœ œœ# œ# œ# œ# œ œ# œ# œ œ# œ# œ# œœP1

score pitches rtms/times

2D-Editor

Eobjectsactive

length-sub-group-rule

pmc

2 6

4 lengths

true/false 0

g-length

A

33

44

Figure 22: 1-01-12-length-rules

2.2.14 13-Several-Index-Rules

1.01.13 - SEVERAL-INDEX-RULES
This patch shows you four rules for indexes. Select with [a] which rule you want to
apply, and then evaluate the FIRST box [5] to see the results.
INDEX-RULE [1] This rule obliges a variable in the solution (indicated by it index posi-
tion) to have the value indicated in its right input.
NOT-INDEX-RULE [2] This rule obliges a variable of the solution (indicated by its index
position) NOT to have the value indicated in its right input.
INDEX-HIGHER-RULE [3] This rule obliges a variable of the solution (indicated by its
index position) to have a value higher than the one indicated in its right input.

2.2 01-Generic-Rules 30

INDEX-LOWER-RULE [4] This rule obliges a variable of the solution (indicated by its
index position) to have a value lower than the one indicated in its right input.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

7 patch

first

list

value-box

(1 2 3 4 5 6 7 8 9 10 11)

index-rule

pmc

i1 7

true/false 0

not-index-rule

pmc

i1 7

true/false 0

index-higher-rule

pmc

i1 7

true/false 0

index-lower-rule

pmc

i1 7

true/false 0

(E)

a --->

11 22 33 44

55

Figure 23: 1-01-13-several-index-rules

2.2.15 14-Index-Length-Rule

1.01.14- INDEX-LENGTH-RULE
This rule [1] obliges to have as a solution a list of lists in which the length of the list
indicated by its [a] index has the length set in [b].
You can control the results by evaluating both the Score-Editor or the ’g-length’ abstrac-
tion. [c]
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 31

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

4 patch

first

list

Score-Editor

E

&

00:00 00:01 00:02

œ# œ# œ# œœ œ# œ# œ# œ# œ# œœ# œœ# œ#P1

score pitches rtms/times

index-length-rule

pmc

i1 5

true/false 0
(E)

a --->

(E)

<--- b

g-length

A

Candidates

A

(E)

<--- c

11

Figure 24: 1-01-14-index-length-rule

2.2.16 15-Index-Nth-Rule

1.01.15 - INDEX-NTH-RULE
This rule [1] obliges the nth element (indicated in [b] from 0 to n) of the list indicated
by its index [a] to have the value put in [c].
Do not forget that the list representing a chord is not necessarily ordered from the
lowest to the highest note.
Please, if you have difficulties to understand this rule, keep in mind that the first nth
element is 0, and try evaluating the FIRST box [d] for a better reading of the results.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 32

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

4 patch

first

list

Score-Editor

E

&

00:00 00:01 00:02

œœ# œ œ# œ# œ# œ# œœ# œ# œ# œ œ# œ# œ œ# œ# œ œ# œ# œP1

score pitches rtms/times

(E)

a --->

(E)

<--- b

index-nth-rule

pmc

i1 2

60 true/false

0(E)

c --->

Candidates

A

(E)

<--- d

11

Figure 25: 1-01-15-index-nth-rule

2.2.17 16-Index-Applied-Sum-Rule

1.01.16 - INDEX-APPLIED-SUM-RULE
This rule [1] obliges the variable indicated by ’index’ [a] to have its elements, summed
together, give back the number put in the ’sum’ input [b].
Here the candidates are pretty limited, so the Multi-PMC may not produce results for a
certain amount of values in ’sum’. [b]
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 33

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

Candidates

A

pwgl-repeat

4 patch

first

list

(E)

a --->

(E)

<--- b

index-applied-sum-rule

pmc

i1 11

true/false0

11

Figure 26: 1-01-16-index-applied-sum-rule

2.2.18 17-Member-Rules

1.01.17 - MEMBER-RULES
MEMBER-RULE [1] obliges any element of the solution to belong to the elements indi-
cated in ’list’ input [a].
NOT-MEMBER-RULE [2] does the opposite.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 34

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

4 patch

first

list

(E)

a --->

not-member-rule

pmc

(1 2) true/false

0

member-rule

pmc

(1 2) true/false

0

value-box

(1 2 3 4 5 6 7 8)

11 22

Figure 27: 1-01-17-member-rules

2.2.19 18-Not-Higher-or-Lower-than-Rules

1.01.18 - NOT-HIGHER-OR-LOWER-THAN-RULES
NOT-HIGHER-THAN-RULE [1] forbids any element of the solution to be higher than the
value indicated in the ’limit’ input [a].
NOT-LOWER-THAN-RULE [2] does the opposite.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 35

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

4 patch

first

list

(E)

a --->

value-box

(1 2 3 4 5 6 7 8)

not-higher-than-rule

pmc

3 true/false

0

not-lower-than-rule

pmc

3 true/false

0

11 22

Figure 28: 1-01-18-not-higher-or-lower-than-rules

2.2.20 19-Count-Common-Elements-Rule

1.01.19 - COUNT-COMMON-ELEMENTS-RULE
This rule [1] obliges the sub-lists in the solution to have a desired number [a] of com-
mon elements. These common elements are not necessarily constant.
The abstraction [b] generates all sub-lists of length 4 with numbers from 1 to 9.
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.2 01-Generic-Rules 36

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

first

list

(E)

a --->

pwgl-repeat

8 patch

count-common-elements-rule

pmc

3 true/false

0

All-solutions

A (E)

<--- b

11

Figure 29: 1-01-19-count-common-elements-rule

2.2.21 20-Count-Any-Element-Rule

1.01.20 - COUNT-ANY-ELEMENT-RULE
This rule [1] obliges the solution to have any element repeated as many times as indi-
cated in [a].
PLEASE BE CAREFUL Often in these tutorials the heuristic rules are initialized on pur-
pose with a weight of 0. This was done in order to get used with the attribution of
weights to these rules.

2.3 02-Interval-Rules 37

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

pwgl-repeat

8 patch

first

list

(E)

a --->

value-box

(1 2 3 4 5 6 7 8)

count-any-element-rule

pmc

2 true/false

0

11

Figure 30: 1-01-20-count-any-element-rule

2.3 02-Interval-Rules

2.3.1 Interval-Rules

The following rules are conceived for intervals. That means that, as an interval is the
distance between two points, these rules can be applied to any concept invoking the
notion of distance like durations, melodic intervals or distance between intensities and
so on.
Some of these rules have a particular menu called absolute? or up/down. If the menu
absolute? is set in the absolute mode, that means that the intervals are intended in
absolute mode (always positive). If this menu is set in up/down mode, that means that
the intervals are divided into ascending (positive) and descending (negative).

2.3.2 01-Several-Interval-No-Repetitions

1.02.01 - SEVERAL-INTERVAL-NO-REPETITIONS
This patch shows three rules to forbid some interval successions.

2.3 02-Interval-Rules 38

NO-INTERVAL-LOCAL-REPETITION-RULE [1] This rule does not allow any local repeti-
tion of intervals. That means, for instance, that an ascending minor third can never be
followed by another ascending minor third (in up/down mode) or any minor third (in
absolute mode).
NO-INTERVAL-REPETITION-RULE [2] This rule does not allow any repetition of inter-
vals.
If the menu absolute? is set on absolute, that means that intervals are considered in
absolute mode. If this menu is set in the up/down mode, that means that the intervals
are divided into ascending and descending. In this second case for instance a minor
third going up can be followed by a minor third going down.
NO-LOCALLY-REPEATED-GIVEN-INTERVAL-RULE [3] This rule obliges a solution not
to have a given interval [a] locally repeated. It looks like NO-INTERVAL-LOCAL-
REPETITION-RULE but is limited to the given interval.
If the menu absolute? is set on absolute, that means that intervals are considered in
absolute mode. If this menu is set in the up/down mode, that means that the intervals
are divided into ascending and descending. In this second case for instance a minor
third going up can be followed by a minor third going down.
Please try these rules by evaluating both the CHORD-EDITOR or the X->DX [4] func-
tion, if you need a better reading of intervals changes.

2.3 02-Interval-Rules 39

Multi-PMC

search-space

rules () heur-rules

T 1 ()

11 22

pwgl-repeat

7 patch

first

list

33

arithm-ser

60

1

72

collect-rules

r1

Chord-Editor

E

&
?

w# w w# w# w w wn

chord pitches

no-interval-local-repetition-rule

pmc

true/false 1

no-interval-repetition-rule

pmc

true/false :ABSOLUTE

0

no-locally-repeated-given-interval-rule

pmc

3 :ABSOLUTE

true/false 0

x->dx

xs

44

(E)

a --->

Figure 31: 1-02-01-several-interval-no-repetitions

2.3.3 02-Several-Allowed-or-Not-Interval-Rules

1.02.02 - SEVERAL-ALLOWED-OR-NOT-INTERVAL-RULES
In this patch there are three rules allowing or not some given intervals.
ALLOWED-INTERVALS-RULE [1] This rule allows only the intervals indicated in inter-
vals.
If the menu absolute?’ is set in the absolute mode, that means that intervals are intended
in absolute mode. If this menu is set in up/down mode, that means that the intervals
are divided into ascending and descending. So if you put -3 in the up/down mode that
means that only descending minor third are admitted.
NOT-ALLOWED-INTERVALS-RULE [2] This rule does not allow the intervals indicated
in intervals.
If the menu absolute?’ is set in the absolute mode, that means that intervals are intended
in absolute mode. If this menu is set in up/down mode, that means that the intervals
are divided into ascending and descending. So if you put -3 in the up/down mode that
means that only descending minor third are not admitted.
ALLOWED-DISTANT-INTERVALS-RULE [3] This rule allows a sequence of intervals to
equal, within a given distance, one of the allowed intervals in the input ’intervals’. The

2.3 02-Interval-Rules 40

distance has to be described giving the first and the last note of the distance.
For instance, if in ’distance’ you put 1 and 3 it means that the sum of the intervals
between the first and the third notes of the sequence has to be a member of ’intervals’.
Please remember that here the distance is expressed not in term of intervals but in term
of notes.
Please try these rules by evaluating both the CHORD-EDITOR or the X->DX [4] func-
tion, if you need a better reading of intervals changes.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

11 22

pwgl-repeat

7 patch

first

list

33

arithm-ser

60

1

72

collect-rules

r1

Chord-Editor

E

&
?

w w w# wn w# wn w#

chord pitches

allowed-intervals-rule

pmc

(-1 2 -3) :ABSOLUTE

true/false 0

not-allowed-intervals-rule

pmc

(-1 2 -3) :ABSOLUTE

true/false 0

allowed-distant-intervals-rule

pmc

(1 5) (2 5)

:ABSOLUTEtrue/false

0

x->dx

xs

44

Figure 32: 1-02-02-several-allowed-or-not-interval-rules

2.3.4 03-No-Consecutive-Equal-Interval-Rules

1.02.03 - NO-CONSECUTIVE-EQUAL-INTERVALS-RULE
This rule [1] does not allow any repetition of intervals for a length put in how-many.
If the menu absolute? is set in the absolute mode, that means that intervals are intended
in absolute mode. If this menu is set in up/down mode, that means that the intervals
are divided into ascending and descending. So if you put 3, in the how-many input,
that means that any interval can not be repeat consecutively for more than two times.

2.3 02-Interval-Rules 41

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

7 patch

first

list

arithm-ser

60

1

65

collect-rules

r1

Chord-Editor

E

&
?

w# w w# w# w# wn w

chord pitches

no-consecutive-equal-intervals-rule

pmc

3 true/false

:ABSOLUTE0

x->dx

xs

11

Figure 33: 1-02-03-no-consecutive-equal-interval-rules

2.3.5 04-Obliged-or-Not-Interval-Chain

1.02.04 - OBLIGED-OR-NOT-INTERVAL-CHAIN-RULE
OBLIGED-INTERVAL-CHAIN-RULE [1] This rule obliges an interval to be followed by
those put in int-list.
If the menu absolute?’ is set in the absolute mode, that means that intervals are intended
in absolute mode. If this menu is set in up/down mode, that means that the intervals
are divided into ascending and descending.
NOT-OBLIGED-INTERVAL-CHAIN-RULE [2] This rule obliges an interval NOT to be fol-
lowed by those put in int-list.
If the menu absolute?’ is set in the absolute mode, that means that intervals are intended
in absolute mode. If this menu is set in up/down mode, that means that the intervals
are divided into ascending and descending.

2.3 02-Interval-Rules 42

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

72

collect-rules

r1

more-rules

Chord-Editor

E

&
?

w w# w# w w#

chord pitches

obliged-interval-chain-rule

pmc

3 (11)

true/false :ABSOLUTE

0

index-interval-rule

pmc

5 0

(3) :ABSOLUTE

true/false 0

not-obliged-interval-chain-rule

pmc

3 (1 2 3 4 5 6 7 8 9)

true/false :ABSOLUTE

0

11 22

x->dx

xs

Figure 34: 1-02-04-obliged-or-not-interval-chain

2.3.6 05-Repeat-Interval

1.02.05 - REPEAT-INTERVAL-RULE
REPEAT-INTERVAL-RULE [1] obliges a solution to have a given interval [a]repeated
many times as indicated in ”times” [b].
The interval is considered in the absolute mode but as you can see, in this case, the
ASCENDING-WITHOUT-REPETITION-RULE [2] forbids descending intervals. You can
bypass it with the SWITCH [c]
If the menu which? is set on <, it means that the given interval has to be repeated a
number of time inferior to the one put in times. If the menu which? is set on =, it
means that the given interval has to be repeated a number of time equal to the one put
in times. If the menu which? is set on >, it means that the given interval has to be
repeated a number of times bigger than the one put in times.

2.3 02-Interval-Rules 43

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

72

collect-rules

r1

more-rules

Chord-Editor

E

&
?

w# w w# w w

chord pitches

22

repeat-interval-rule

pmc

3 =

3 true/false

0
ascending-without-repetition-rule

pmc

true/false 0

x->dx

xs

11

first

(E)

<--- c

(E)

a --->

(E)

b --->

Figure 35: 1-02-05-repeat-interval

2.3.7 06-Repeat-Resulting-Interval

1.02.06 - REPEAT-RESULTING-INTERVAL-RULE
REPEAT-RESULTING-INTERVAL-RULE [1] obliges a solution to have a given resulting-
interval repeated many times as indicated in the ’time’ input. A resulting interval is an
interval between a note and any possible other notes.
In this sense, look at the function FIND-ALL-INTERVALS (that you can call using the
package JBS-CONSTRAINTS::FIND-ALL-INTERVALS). This function [a] gives all the in-
tervals between all notes of a sequence.
If the menu which? is set on <, it means that the given interval has to be repeated a
number of time inferior to the one put in times. If the menu which? is set on =, it
means that the given interval has to be repeated a number of time equal to the one put
in times. If the menu which? is set on >, it means that the given interval has to be
repeated a number of times bigger than the one put in times.

2.3 02-Interval-Rules 44

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

63

collect-rules

r1

()

Chord-Editor

E

&
?

w# w# w# w wn

chord pitches

repeat-resulting-interval-rule

pmc

3 =

3 true/false

0

find-all-intervals

chord

Chord-Editor

E

&
?

w w# w w#

chord pitches

(E)

<--- a

find-all-intervals

chord

11

Figure 36: 1-02-06-repeat-resulting-interval

2.3.8 07-Index-or-Not-Index-Interval

1.02.07 - INDEX-INTERVAL-RULE
INDEX-INTERVAL-RULE [1] obliges a given interval indicated with ’index’ to be a mem-
ber of a list of possible intervals indicated in ’allowed’.
Attention ! The indexes start at zero as in Lisp.
If the menu absolute? is set in the absolute mode, it means that intervals are intended
in absolute mode. If this menu is set in up/down mode, it means that the intervals are
divided into ascending and descending.
NOT-INDEX-INTERVAL-RULE [2] does the opposite.

2.3 02-Interval-Rules 45

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

71

collect-rules

r1

more-rules

Chord-Editor

E

&
?

w w w w w#

chord pitches

11 22

index-rule

pmc

i1 60

true/false 0

x->dx

xs

index-interval-rule

pmc

2 (2 4)

:ABSOLUTEtrue/false

1

not-index-interval-rule

pmc

2 (2 4)

:ABSOLUTEtrue/false

1

Figure 37: 1-02-07-index-or-not-index-interval

2.3.9 08-Not-Bigger-Not-Smaller-Interval

1.02.08 - NOT-BIGGER-NOT-SMALLER-INTERVAL-RULE
This patch shows you two functions with a particular behaviour.
To use NOT-BIGGER-INTERVAL-RULE [1], you first need to define if you work on posi-
tive, negative or absolute intervals using the menu ’sign?’ [a].
If you choose ’+’, it means that this function does not allow intervals bigger than the
one entered in ’limit’ only for positive intervals. If you choose ’-’, it means that this
function does not allow intervals bigger than the one entered in ’limit’ only for negative
intervals. If you choose ’absolute’, it means that this function does not allow intervals
bigger than the one entered in ’limit’ both for positive and negative intervals.
NOT-SMALLER-INTERVAL-RULE [2] does the opposite.

2.3 02-Interval-Rules 46

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

71

Chord-Editor

E

&
?

w w w w# w

chord pitches

11

collect-rules

r1

collect-rules

r1

(E)

<--- a

Multi-PMC

search-space

rules () heur-rules

T 1 ()first

list

Chord-Editor

E

&
?

w w# w w# w#

chord pitches

x->dx

xs x->dx

xs

22
not-bigger-interval-rule

pmc

4 absolute

true/false 1

not-smaller-interval-rule

pmc

4 absolute

true/false 1
(E)

<--- a

Figure 38: 1-02-08-not-bigger-not-smaller-interval

2.3.10 09-Resulting-Not-Resulting-Interval

1.02.09 - RESULTING-NOT-RESULTING-INTERVAL-RULE
This patch refers to the concept of a resulting interval. A resulting interval is an interval
between a note of a sequence and any possible other notes in the same sequence.
The RESULTING-INTERVAL-RULE [1] obliges the solution to have, among all the inter-
vals within a sequence, the defined interval.
The NOT-RESULTING-INTERVAL [2] does the opposite.
In this sense, look at the function FIND-ALL-INTERVALS (that you can call using the
package JBS-CONSTRAINTS::FIND-ALL-INTERVALS). This function gives all the inter-
val between all notes of a sequence. Evaluate the FIND-ALL-INTERVALS box [3] and
look at the result.

2.3 02-Interval-Rules 47

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

71

Chord-Editor

E

&
?

w# w# w wn w

chord pitches

11

collect-rules

r1

resulting-interval-rule

pmc

6 true/false

0

no-resulting-interval-rule

pmc

6 true/false

0

22

find-all-intervals

chord

Chord-Editor

E

&
?

w w w w w

chord pitches

33

find-all-intervals

chord

Figure 39: 1-02-09-resulting-not-resulting-interval

2.3.11 10-Jump-Resolution

1.02.10 - JUMP-RESOLUTION-RULE
If an interval is bigger than the value put in the ’interval’ input, the next interval has to
go in the opposite direction and it has to be smaller than the value put in ’resolution’
input.

2.3 02-Interval-Rules 48

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

71

Chord-Editor

E

&
?

w# w w w w

chord pitches

11

collect-rules

r1

more-rules

jump-resolution-rule

pmc

6 2

true/false 0
index-interval-rule

pmc

5 0

(6) :ABSOLUTE

true/false 0

x->dx

xs

Figure 40: 1-02-10-jump-resolution

2.3.12 11-Do-Reach-Do-Not-Reach-That-Interval

1.02.11 - DO-REACH-DO-NOT-REACH-THAT-INTERVAL-RULE
DO-REACH-THAT-INTERVAL-RULE [1] obliges a solution to reach a given interval [a]
within a given number of notes [b].
DO-NOT-REACH-THAT-INTERVAL-RULE [2] does the contrary.

2.3 02-Interval-Rules 49

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w w# w# w

chord pitches

11

collect-rules

r1

more-rules

do-reach-that-interval-rule

pmc

4 12

true/false 0

do-not-reach-that-interval-rule

pmc

4 12

true/false 0

ascending-without-repetition-rule

pmc

true/false 0

(E)

b --->

22

(E)

<--- a

(E)

b --->

(E)

<--- a

Figure 41: 1-02-11-do-reach-do-not-reach-that-interval

2.3.13 12-Apply-Interval-Sum

1.02.12 - APPLY-INTERVAL-SUM-RULE
APPLY-INTERVAL-SUM-RULE [1] outputs a solution having the sum of all intervals equal
to the value put in ’sum’ [a].
Evaluate the APPLY box [2] and see that the result is equal to the defined value.

2.3 02-Interval-Rules 50

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w w# w# w

chord pitches

collect-rules

r1

(E)

a --->

apply-interval-sum-rule

pmc

12 true/false

0

x->dx

xs

apply

+

arg

g-abs

l?

11

22

Figure 42: 1-02-12-apply-interval-sum

2.3.14 13-Apply-Interval-Global-Sum

1.02.13 - APPLY-INTERVAL-GLOBAL-SUM-RULE
This rule [1] outputs a solution having the sum of all intervals equal to the value put in
’sum’.
The difference from the APPLY-INTERVAL-SUM-RULE is to discover by yourself. [2]

2.3 02-Interval-Rules 51

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w# w w w

chord pitches

collect-rules

r1

apply

+

arg

g-abs

l?

11

22

apply-interval-global-sum-rule

pmc

12 true/false

0

find-all-intervals

chord

flat

lst

sort-list

lst

Figure 43: 1-02-13-apply-interval-global-sum

2.3.15 14-Not-Complementary-Interval

1.02.14 - NOT-COMPLEMENTARY-INTERVAL-RULE
This rule [1] does not allow the existence of a given interval set in [a] as the product of
two consecutive intervals.
Please evaluate the APPLY box [b] and see that the interval defined in [a] is never
produced by two complementary intervals.

2.3 02-Interval-Rules 52

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

3 patch

first

list

arithm-ser

60

1

72

Chord-Editor

E

&
?

w# w w

chord pitches

collect-rules

r1

more-rules

ascending-without-repetition-rule

pmc

true/false 0

not-complementary-interval-rule

pmc

12 true/false

0
(E)

a --->

x->dx

xs

apply

+

arg
(E)

b --->

11

Figure 44: 1-02-14-not-complementary-interval

2.3.16 15-Interval-Structure

1.02.15 - INTERVAL-STRUCTURE-RULE
The INTERVAL-STRUCTURE-RULE [1] obliges a solution to have the given interval se-
quence defined in [a].
N.B. : BE CAREFULL ! The number of intervals put in interval-structure has to be one
element less than the number of candidates you put in the search space [b].
The NOT-INTERVAL-STRUCTURE-RULE [2] does the opposite. It forbids a solution to
have a given sequence of intervals defined in [a].
Here too, BE CAREFULL ! The number of intervals put in interval-structure has to be
one element less than the number of candidates you put in the search space [b].

2.3 02-Interval-Rules 53

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

5 patch

first

list

arithm-ser

60

1

77

Chord-Editor

E

&
?

w w w w w

chord pitches

collect-rules

r1

(E)

a --->

interval-structure-rule

pmc

(2 3 -1 7) true/false

0

(E)

b --->

11 22
not-interval-structure-rule

pmc

(2 -1 5 4) true/false

0
(E)

a --->

x->dx

xs

Figure 45: 1-02-15-interval-structure

2.3.17 16-Count-Positive-Negative-Intervals

1.02.16 - COUNT-POSITIVE-NEGATIVE-INTERVALS-RULE
If you use the COUNT-POSITIVE-INTERVALS-RULE [1], the solution will have a number
of positive intervals as indicated in ’number’ [a].
If you use the COUNT-NEGATIVE-INTERVALS-RULE [2], the solution will have a number
of negative intervals as indicated in ’number’ [a].

2.4 03-Pitch-Rules 54

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

7 patch

first

list

arithm-ser

60

1

77

Chord-Editor

E

&
?

w# w w# w# w# wn
w

chord pitches

collect-rules

r1

(E)

a --->

11 22

(E)

a --->

count-positive-intervals-rule

pmc

2 true/false

0

count-negative-intervals-rule

pmc

2 true/false

0

x->dx

xs

Figure 46: 1-02-16-count-positive-negative-intervals

2.4 03-Pitch-Rules

2.4.1 Pitch-Rules

The following rules are conceived for pitches. For that reason sometimes this tutorial
refers to the modulo 12 (or 24, or 48 if we work with quarter or eighth of tones). Please
if you do not know the function g-mod, see the PWGL documentation about it.
Just as a reminder : arithmetic modulo 12 is used by musicians, for instance, in consid-
eration of the twelve-tones equal temperament system, where octave and enharmonic
equivalency occurs.

2.4.2 01-Allowed-and-Not-Allowed-Pitches

1.03.01 - ALLOWED-PITCH-RULE
ALLOWED-PITCH-RULE [1] forces the solution to be constituted only by pitches indi-
cated in ’pitch’ input [a]. It differs from MEMBER-RULE because it considers pitches at
any octave defined in the candidates.
NOT-ALLOWED-PITCH-RULE [2] does the opposite.

2.4 03-Pitch-Rules 55

ALLOWED-POLARIZED-PITCH-RULE [3] allows only, for a given modulo 12 note, the
pitch defined in [a]. In this example, the rule allows only, for the C and D notes, the
pitch 60 and 62 and forbids all others.
ATTENTION ! You can control the results by evaluating both the CHORD-EDITOR and
the G-MOD function [4], which reduces any value to its modulo 12. For instance, any
C-sharp (49, 61 or 73) will be reduced to 1, any E (52, 64 or 76) will be reduced to 4,
and so on...
ATTENTION AGAIN !!! If you work with microtones be sure that all pitches you define
in [a] are floats. That means that if you admit 60 as a possible note, if you are using
microtonal candidates (like quarter of tones for instance) you have to use 60.0 and not
simply 60.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

10 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w
w w# w# w# wn w# w# w w#

chord pitches

11

collect-rules

r1

(E)

a --->

33

(E)

a --->

allowed-pitch-rule

pmc

(60 62 64) true/false

0

not-allowed-pitch-rule

pmc

(60 62 64) true/false

0

g-mod

l1? 12

44

allowed-polarized-pitch-rule

pmc

(60 62) true/false

1

22

(E)

a --->

Figure 47: 1-03-01-allowed-and-not-allowed-pitches

2.4.3 02-Allowed-Pitches-Structure-and-Class

1.03.02 - ALLOWED-PITCHES-STRUCTURES-AND-CLASSES
This patch shows you three different ways to define the pitches you want within your
solution. These rules are based on the concepts of pitch structure and pitch class.
ALLOWED-PITCH-STRUCTURE-RULE [1] creates a solution based on the set theory. In

2.4 03-Pitch-Rules 56

this way only the set of pitches indicated in ’pitch’ input will be allowed at any octave.
N.B. : The chord produced will always be complete, or in other words it will always
contain all the chosen pitches side by side.
ALLOWED-PITCH-CLASS-RULE [2] creates a solution based on a pitch class (a concept
belonging to the set theory) derived from a chord put in [a]. In this case a C-minor
triad is entered in [a]. The Multi-PMC will find any solution corresponding to the same
class, i.e. at any possible octave, transposition, inversion or arrangement.
ALLOWED-PITCH-CLASS-SUB-LIST-RULE [3] allows an occurence of a defined pitch
class (for instance a minor triad, indicated in ’pitch’ input) among other notes in the
solution So in this example I’m looking for a solution including a (consecutive) minor
triad within a 5 notes chord.
ATTENTION ! You can control the results by evaluating both the CHORD-EDITOR and
the G-MOD function [4], which reduces any value to its modulo 12. For instance, any
C-sharp (49, 61 or 73) will be reduced to 1, any E (52, 64 or 76) will be reduced to 4,
and so on...

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

3 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w w# w

chord pitches

11

collect-rules

r1

more-rules

22
allowed-pitch-structure-rule

pmc

(60 63 67) true/false

0

allowed-pitch-class-rule

pmc

(60 63 67) true/false

0

allowed-pitch-class-sub-list-rule

pmc

(60 63 67) true/false

0

ascending-without-repetition-rule

pmc

true/false 0

33

(E)

a --->

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

6 patch

first

list

Chord-Editor

E

&
?

w# w w# w w w#

chord pitches

collect-rules

r1

more-rules

g-mod

l1? 12
g-mod

l1? 12

44 44

To be discussed

A

Figure 48: 1-03-02-allowed-pitches-structure-and-class

2.4 03-Pitch-Rules 57

2.4.4 03-Not-Allowed-Pitches-Structure-and-Class

1.03.03 - NOT-ALLOWED-PITCHES-STRUCTURES-AND-CLASSES
This patch shows you three different ways to define the pitches you do not want to
occur within your solution. These rules are based on the concepts of pitch structure and
pitch class.
NOT-ALLOWED-PITCH-STRUCTURE-RULE [1] creates a solution based on the set the-
ory. In this way, the set of pitches indicated in ’pitch’ input will NOT be allowed at any
octave. N.B. : The chord produced may contain some of the pitches defined in ’pitch’
but never side by side.
NOT-ALLOWED-PITCH-CLASS-RULE [2] creates a solution that do NOT include the
same pitch class (a concept belonging to the set theory) derived from a chord put in [a].
In this case a C-minor chord is entered in [a]. The Multi-PMC will find a solution NOT
including this class, with any possible octave, transposition, inversion or arrangement.
The NOT-ALLOWED-PITCH-CLASS-SUB-LIST-RULE [3] forbids any occurence of a class,
defined in ’pitch’ input, among the notes of the solution. So in this example I am looking
for a solution in which a minor triad cannot occur.
ATTENTION ! You can control the results by evaluating both the CHORD-EDITOR and
the G-MOD function [4], which reduces any value to its modulo 12. For instance, any
C-sharp (49, 61 or 73) will be reduced to 1, any E (52, 64 or 76) will be reduced to 4,
and so on...

2.4 03-Pitch-Rules 58

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

3 patch

first

list

arithm-ser

60

1

78

Chord-Editor

E

&
?

w w w#

chord pitches

11

collect-rules

r1

more-rules

22

ascending-without-repetition-rule

pmc

true/false 0

33

(E)

a --->

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

first

list

Chord-Editor

E

&
?

w# w# w w#

chord pitches

collect-rules

r1

more-rules

not-allowed-pitch-structure-rule

pmc

(60 63 67) true/false

0

not-allowed-pitch-class-rule

pmc

(60 63 67) true/false

0

not-allowed-pitch-class-sub-list-rule

pmc

(60 63 67) true/false

0

g-mod

l1? 12

44

g-mod

l1? 12

44

To be discussed

A

Figure 49: 1-03-03-not-allowed-pitches-structure-and-class

2.4.5 04-Index-and-Not-Index-Pitch

1.03.04 - INDEX-AND-NOT-INDEX-PITCH-RULE
[1] The INDEX-PITCH-RULE forces a given position (’index’ input)in the solution to be
occupied by any pitch (at any octave) in the list defined with ’pitch’ input.
[2] The NOT-INDEX-PITCH-RULE does the opposite.

2.4 03-Pitch-Rules 59

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

3 patch

first

list

arithm-ser

48

1

78

Chord-Editor

E

&
? w w

w

chord pitches

11

collect-rules

r1

more-rules

22

ascending-without-repetition-rule

pmc

true/false 0

index-pitch-rule

pmc

i1 (60 62)

true/false 0

not-index-pitch-rule

pmc

i1 (60 62)

true/false 0

g-mod

l1? 12

Figure 50: 1-03-04-index-and-not-index-pitch

2.4.6 05-Any-Note-Repeated

1.03.05 - ANY-NOTE-REPEATED-RULE
ANY-NOTE-REPEATED-RULE [1] verifies that any note (modulo 12) in the solution is
repeated more, less or exactly the number of time defined in ’times’ input.
N.B. BE CAREFUL The menu ’which?’ defines less, equal or more. If you set <, the
calculation is quite fast. If you set =, be sure to have a pair number of candidates in the
search space. If you set >, the calculation can be very slow.

2.4 03-Pitch-Rules 60

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

6 patch

first

list

arithm-ser

48

1

78

Chord-Editor

E

&
?

w
w w

w w w

chord pitches

11

collect-rules

r1

any-note-repeated-rule

pmc

2 =

true/false 0

g-mod

l1? 12

Figure 51: 1-03-05-any-note-repeated

2.4.7 06-Count-this-Note-and-Modulo

1.03.06 - COUNT-THIS-NOTE-AND-MODULO
This patch shows you how to count a single note or the modulo 12 of a given note.
COUNT-THIS-NOTE-RULE [1] obliges a solution to have the given note repeated many
times as indicated in ’how-many’ in the exact defined octave.
COUNT-THIS-MODULO-RULE [2] obliges a solution to have a given note repeated many
times as indicated in ’how-many’, in any possible octave.

2.4 03-Pitch-Rules 61

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

6 patch

first

list

arithm-ser

48

1

78

Chord-Editor

E

&
? w

w w# w# w# w#

chord pitches

11

collect-rules

r1

22
count-this-note-rule

pmc

68 3

true/false 0

count-this-modulo-rule

pmc

68 3

true/false 0

g-mod

l1? 12

To be discussed

A

Figure 52: 1-03-06-count-this-note-and-modulo

2.4.8 07-Not-Repeated-Modulo-12

1.03.07 - NOT-REPEATED-MODULO-12
NOT-MODULO12-REPETITION-RULE [1] creates a solution without any modulo 12 rep-
etition, i.e. in any octave.
NOT-MODULO12-LOCAL-REPETITION-RULE [2] creates a solution without any consec-
utive modulo 12 repetition.
You can control the result of these two rules by evaluating the first output [a] of the
’g-mod-group’ abstraction [3].
NOT-REPEATED-MODULO12-SUB-GROUP-RULE [3] creates a solution without any
modulo 12 repetition inside each sub-group whose length is defined by ’sub-group-
length’ input.
You can control the result of this rule by evaluating the second output [b] of the ’g-mod-
group’ abstraction [3]. Please verify that [c] in the abstraction is the same value than
the one defined in ’sub-group-length’ input of the rule.

2.4 03-Pitch-Rules 62

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

12 patch

first

list

arithm-ser

60

1

72

Chord-Editor

E

&
?

w# w# w# w# wn w wn w w# wn w w

chord pitches

11

collect-rules

r1

()

22
not-repeated-modulo12-sub-group-rule

pmc

4 true/false

0

not-modulo12-repetition-rule

pmc

true/false 0

g-mod-group

A

33

33
not-modulo12-local-repetition-rule

pmc

true/false 1

(E)

^
a

(E)

^
b

Figure 53: 1-03-07-not-repeated-modulo-12

2.4.9 08-Mk-Profile-Pitch

1.03.08 - MK-PROFILE-PITCH-RULE
MK-PROFILE-PITCH-RULE [1] asks the engine to put out a solution identical to the
profile in bpf format [2].
The ’approx’ input [a] defines the approximation of the mapping from the 2D-EDITOR’s
samples. 2 will output values for the chromatic scale, 4 will round the values to quarter
of tones, 8 to eighth of tones, and so on... Take care to change the step of the ARITM-
SER box [b] to 0.5 or 0.25 in order to produce a result with micro-tones.
ATTENTION ! This rule is essentially useful in heuristic mode, in order that other rules
can contradict it.

2.4 03-Pitch-Rules 63

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list

arithm-ser

50

1

72

Chord-Editor

E

&
? w w# w w# wn w# w# w# wn w

chord pitches

11

collect-rules

r1

22
mk-profile-pitch-rule

pmc

50 72

steps profile

2 true/false

0

num-box

10

2D-Editor

Eobjects active

(E)

a --->

(E)

b --->

Figure 54: 1-03-08-mk-profile-pitch

2.4.10 09-Mk-Profile-Pitch-Modulo

1.03.09 - MK-PROFILE-PITCH-MODULO-RULE
MK-PROFILE-PITCH-MODULO-RULE [1] asks the engine to put out a list of pitches
based on the same modulo 12 sequence than the given profile.
It creates a variation of a given pitch profile on any octave.

2.5 04-Shaping-Rules 64

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list

arithm-ser

50

1

72

Chord-Editor

E

&
? w

w# w
w w#

w w w# w# w#

chord pitches

11
collect-rules

r1

mk-profile-pitch-modulo-rule

pmc

pitches true/false

0

Chord-Editor

E

&
? w w# w w w# w w w# w# w#

chord pitches

length

arg1

g-mod

l1? 12

Figure 55: 1-03-09-mk-profile-pitch-modulo

2.5 04-Shaping-Rules

2.5.1 Shaping-Rules

The following rules have been conceived to control and generate shapes. The concept
of shape is at the same time based on BPF representations and on melodic profile rep-
resentations. In a sense, this part of the library concerns geometrical disposition of a
sequence of elements.
Two particular functions (DIRECT-ANALYSIS and ENERGY-PROFILE) belong to the
study of morphology. It is possible that in future these two functions’ name and lo-
cation will change. If it happens, I will keep these functions in the code, in order to
make your patches run, but they’ll probably disappear from this menu. Please look at
the Morphologie library for more details.

2.5.2 01-Ascending-Descending-Rule

1.04.01 - ASCENDING-RULE
ASCENDING-RULE [1] obliges the solution to be always ascending.

2.5 04-Shaping-Rules 65

ASCENDING-WITHOUT-REPETITION-RULE [2] obliges the solution to be always as-
cending and without any repetition.
DESCENDING-RULE [3] obliges the solution to be always descending.
DESCENDING-WITHOUT-REPETITION-RULE [4] obliges the solution to be always de-
scending and without any repetition.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

6 patch

first

list

arithm-ser

60

1

72

11

collect-rules

r1

ascending-rule

pmc

true/false 0 ascending-without-repetition-rule

pmc

true/false 0

22

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

6 patch

first

list

arithm-ser

60

1

72

Chord-Editor

E

&
?

w# w w# wn w# wn

chord pitches

33

collect-rules

r1

44

descending-rule

pmc

true/false 0

descending-without-repetition-rule

pmc

true/false 0

Chord-Editor

E

&
?

w# w w w# w w

chord pitches

Figure 56: 1-04-01-ascending-descending-rule

2.5.3 02-Ascending-Descending-Sub-Group-Rule

1.04.02 - ASCENDING-DESCENDING-SUB-GROUP-NO-REPET-RULE
ASCENDING-SUB-GROUP-NO-REPET-RULE [1] obliges the nth value (put in ’nth-?’) of
each list of lists to be in an ascending order without any repetition. That means that
all the first (if nth is equal to zero) elements of the all sub lists are in a sort (<) order
without repetitions.
ASCENDING-SUB-GROUP-WITH-REPET-RULE [2] obliges the nth value (put in ’nth-?’)
of each list of lists to be in an ascending order with repetitions allowed. That means
that all the first (if nth is equal to zero) elements of all sub-lists are in a sort (<) order
with possible repetitions.
DESCENDING-SUB-GROUP-NO-REPET-RULE [3] obliges the nth value (put in ’nth-?’)

2.5 04-Shaping-Rules 66

of each list of lists to be in an descending order without any repetition. That means that
all the first (if nth is equal to zero) elements of the all sub lists are in a sort (>) order
without repetitions.
DESCENDING-SUB-GROUP-WITH-REPET-RULE [4] obliges the nth value (put in ’nth-?’)
of each list of lists to be in an descending order with repetitions allowed. That means
that all the first (if nth is equal to zero) elements of the all sub lists are in a sort (>)
order with possible repetitions.
ATTENTION To control the solutions you must read through all chord objects in the
CHORD-EDITORS.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

first

list

Chord-Editor

E1/4

&
?

w w w# w#

chord pitches

11

collect-rules

r1

22

Candidates

A

ascending-sub-group-no-repet-rule

pmc

0 true/false

0 ascending-sub-group-with-repet-rule

pmc

0 true/false

0

Multi-PMC

search-space

rules () heur-rules

T 1 ()
first

list

Chord-Editor

E1/4

&
?

w# w wn w#

chord pitches

33

collect-rules

r1

44

descending-sub-group-no-repet-rule

pmc

0 true/false

0
descending-sub-group-with-repet-rule

pmc

0 true/false

0

Figure 57: 1-04-02-ascending-descending-sub-group-rule

2.5.4 03-Mk-Fix-Profile-Rule

1.04.03 - MK-FIX-PROFILE-RULE
MK-FIX-PROFILE-RULE [1] asks the engine to put out a solution with a shape identical
or similar to the list defined in ’profile’ input [a].
About the uses of this rule, please look ’MK-Models’ in the examples.

2.5 04-Shaping-Rules 67

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list
Chord-Editor

E

&
?

w w w w# w# w

chord pitches

11

collect-rules

r1

mk-fix-profile-rule

pmc

profile heuristic

1

Chord-Editor

E

&
?

w w w w# w# w

chord pitches

length

arg1

arithm-ser

36

1

76

(E)

a --->

Figure 58: 1-04-03-mk-fix-profile-rule

2.5.5 04-Mk-Profile-Rule

1.04.04 - MK-PROFILE-RULE
MK-PROFILE-RULE [2] asks the engine to put out a solution with a shape similar to the
bpf coming in ’profile’ input. About the uses of this rule, please look ’MK-Models’ in the
examples.
In the NUM-BOX [1] choose how many notes have to constitute your profile. Then in
the 2D-EDITOR [3] draw the curve you want to be the model of the profile.
In [a] you have to put the lowest note and in [b] the highest of the resulting profile.
In [c] you can define how many decimals you use in order to approximate the values
coming out of the 2D-EDITOR. This is particularly useful when you are dealing with
candidates that are not midi values, like rationals.
Evaluate the CHORD-EDITOR [4] in order to see the results.

2.5 04-Shaping-Rules 68

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list

Chord-Editor

E

&
?

w w w# wn w w# w w

chord pitches

22

collect-rules

r1

arithm-ser

36

1

76

num-box

8

11

33

(E)

<--- b

(E)

a --->

44

2D-Editor

Eobjects active

mk-profile-rule

pmc

60 72

steps profile

0 true/false

1(E)

c --->

Figure 59: 1-04-04-mk-profile-rule

2.5.6 05-Sub-Group-Mk-Profile-Rule

1.04.05 - SUB-GROUP-MK-PROFILE-RULE
SUB-GROUP-MK-PROFILE-RULE [2] asks the engine to put out a solution in which,
for each sub-groups, the nth (put in ’nth-?’) has to be identical to follow the profile
extracted from the bpf [3]. That means here that all the first elements (if nth is equal
to zero) of all the sub-lists will take the order given by the profile.
In the NUM-BOX [1] choose how many notes have to constitute your profile. Then in
the 2D-EDITOR [3] draw the curve you want to be the model of the profile. In [a] you
have to put the lowest note and in [b] the highest of the resulting profile.
Evaluate the CHORD-EDITOR [4] and scroll through the succesive chords in order to
see the results.
You can also evaluate the second 2D-EDITOR [c], produced by the g-first abstraction (it
won’t work if you change the ’nth-?’ input of the rule) and see that the result follows as
much as possible the original profile.
Finally, please open the ’sub-group-mk-fix-profile’ abstraction. Here is a way to use
SUB-GROUP-MK-PROFILE-RULE in order to restitute a given melodic profile, like with
MK-FIX-PROFILE-RULE, in a particular index and through several sub-groups.

2.5 04-Shaping-Rules 69

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

22

collect-rules

r1

2D-Editor

Eobjects active

num-box

10

11 33

(E)

<--- b

(E)

a --->

55

sub-group-mk-profile-rule

pmc

60 72

0 steps

profile heuristic

10

Candidates

A

sub-group-mk-fix-profile

A

Chord-Editor

E1/10

&
?

w# w w# w# w wn

chord pitches

flat-once

l

2D-Editor

Eobjects active

g-first

A

(E)

<--- c

44

Figure 60: 1-04-05-sub-group-mk-profile-rule

2.5.7 06-Direct-Analysis-Rule

1.04.06 - DIRECT-ANALYSIS-RULE
DIRECT-ANALYSIS [2] is a function of the Morphologie library. Right now you just need
to know that this function gives you the directions of intervals in a given sequence [1].
DIRECT-ANALYSIS-RULE [3] asks the engine to put out a solution that has an identical
analysis in terms of directions. You can control this by evaluating the second DIRECT-
ANALYSIS function [4].

2.5 04-Shaping-Rules 70

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list

Chord-Editor

E

&
? w#

w w# w
w w# w wn

w w# w#
w w#

chord pitches

collect-rules

r1

11

22

33
direct-analysis-rule

pmc

analysis true/false

0

Chord-Editor

E

&
?

w w w w# w# w w w w w# w# w w

chord pitches

direct-analysis

list

length

arg1

arithm-ser

48

1

72

direct-analysis

list

44

Figure 61: 1-04-06-direct-analysis-rule

2.5.8 07-Energy-Profile-Rule

1.04.07 - ENERGY-PROFILE-RULE
The CONTRASTS-LEV.1 [2] is a function of the Morphologie library. Right now you just
need to know that this function gives you an analysis of the energy of information of a
given sequence [1].
The ENERGY-PROFILE-RULE [3] asks the engine to put out a solution that has an iden-
tical analysis in terms of energy of information.

2.6 05-Pattern-Rules 71

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

count patch

first

list

Chord-Editor

E

&
?

w# w w w w w#

chord pitches

collect-rules

r1

11

22

33

Chord-Editor

E

&
?

w w w w# w w

chord pitches

length

arg1

arithm-ser

60

1

72

energy-profile-rule

pmc

energy-profile true/false

1

2D-Editor

Eobjects active

2D-Editor

Eobjects active

contrasts-lev.1

sequence

contrasts-lev.1

sequence

Figure 62: 1-04-07-energy-profile-rule

2.6 05-Pattern-Rules

2.6.1 Shaping-Rules

The following rules are useful to control and generate patterns. By pattern I mean a
type of theme, of recurring events, or of objects, sometimes referred to as elements of a
set. Patterns are based on repetition. Without repetitions there is no pattern.

2.6.2 01-Ptrn-Find-Not-Ptrn-Find-Rule

1.05.01 - PTRN-FIND-RULE
PTRN-FIND-RULE [1] looks for solutions including patterns with a given length of el-
ements put in ’ptrn-length’ input [a]. In ’repeated-ptrn’ input [b] you have to put how
many different patterns you want to be repeated along the solution.
If the menu ’which?’ [c] is set on :
<, it means that you are looking for solutions having a number of repetitions of a pattern
smaller than the one set in repeated-ptrn [b].

2.6 05-Pattern-Rules 72

<=, it means that you are looking for solutions having a number of repetitions of a
pattern smaller or equal to the one set in repeated-ptrn [b].
=, it means that you are looking for solutions having a number of repetitions of a
pattern exactly equal to the one set in repeated-ptrn [b].
>=, it means that you are looking for solutions having a number of repetitions of a
pattern bigger or equal to the one set in repeated-ptrn [b].
>, it means that you are looking for solutions having a number of repetitions of a pattern
bigger than the one set in repeated-ptrn [b].
Please evaluate the PTRN-FIND function (which belong to the Morphologie library) and
see that the solution includes as many repeated patterns than defined in [b].
NOT-PTRN-FIND-RULE does the opposite.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

12 patch

first

list

Chord-Editor

E

&
?

w w w# w# w# w# w wn w# w# w w

chord pitches

collect-rules

r1

11

22

arithm-ser

60

1

72

ptrn-find-rule

pmc

2 4

= true/false

0

ptrn-find

list 2

(E)

<--- b

(E)

a --->

(E)

c --->

not-ptrn-find-rule

pmc

2 3

true/false0

33

Figure 63: 1-05-01-ptrn-find-not-ptrn-find-rule

2.6.3 02-Find-this Ptrn-N-Times-Rule

1.05.02 - FIND-THIS-PTRN-N-TIMES-RULE
FIND-THIS-PTRN-N-TIMES-RULE [1] looks for a solution including the precise pattern
you ask in ’pattern’ input [a]. In ’repeated-ptrn’ [b] you have to put how many times
you want this pattern to be repeated in the solution.

2.6 05-Pattern-Rules 73

Multi-PMC

search-space

rules () heur-rules

T 1 ()
pwgl-repeat

7 patch

first

list

Chord-Editor

E

&
?

w# w# wn w# wn w# w

chord pitches

collect-rules

r1

11

22

arithm-ser

60

1

69

ptrn-find

list 2

(E)

<--- b

(E)

a --->

find-this-ptrn-n-times-rule

pmc

pattern 2

true/false 10

Chord-Editor

E

&
?

w# w

chord pitches

Figure 64: 1-05-02-find-this-ptrn-n-times-rule

2.6.4 03-More-First-Repeated-than-Second

1.05.03 - MORE-FIRST-REPEATED-THAN-SECOND-RULE
MORE-FIRST-REPEATED-THAN-SECOND-RULE [1] asks the engine to create a solution
with the first element [a] repeated more times than the second [b].

2.6 05-Pattern-Rules 74

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

4 patch

collect-rules

r1

11

(E)

<--- b

(E)

a --->
more-first-repeated-than-second-rule

pmc

element-1 element-2

true/false 0

Chord-Editor

E

&
?

w w

chord pitches

Chord-Editor

E

&
?

w w#

chord pitches

Candidates

A

Score-Editor

E

&

00:00 00:01 00:02

œœ# œœ œœ œœP1

score pitches rtms/times

Figure 65: 1-05-03-more-first-repeated-than-second

2.6.5 04-Repeated-Pattern-Rule

1.05.04 - REPEATED-PATTERN-RULE
REPEATED-PATTERN-RULE [1] controls the amount of repetitions of a pattern given in
[a] input.
In ’times’ input [b] you put how many times you want the pattern to be repeated.
In ’which?’ [c] you can choose among :
< means less times
= means an exact number of times
> means more times.
In ’absolute?’ [d] you can choose if you are looking for positive elements (absolute) or
not (up/down).
BE CAREFUL (full of care...) If you set [d] in the absolute mode, be sure that you
are looking for positive values put in [a], otherwise you are committing a categorical
mistake !

2.6 05-Pattern-Rules 75

Multi-PMC

search-space

rules () heur-rules

T 1 ()

pwgl-repeat

8 patch

collect-rules

r1

()

11

(E)

a ---> repeated-pattern-rule

pmc

pattern 2

= :ABSOLUTE

true/false 0

dx->x

60 dxs

value-box

(1 1)

Chord-Editor

E

&
?

w w# w# w# w# w w w w# w w# wn wn w# w w# w

chord pitches

Candidates

A

flat

l

(E)

<--- b

(E)

c --->

(E)

<--- d

Figure 66: 1-05-04-repeated-pattern-rule

2.6.6 05-Always-More-Little-Included-Rule

1.05.05 - ALWAYS-MORE-LITTLE-INCLUDED-RULE
ALWAYS-MORE-LITTLE-INCLUDED-RULE [1] builds a solution in which, between two
successive elements, the smaller is always included in the bigger.
Look at the ’Candidates’ [2] abstraction. Here are generated all possible chords with
the given lengths put in [a].

2.7 06-Distance-Rules 76

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

11

(E)

a --->

Candidates

A

(2 3 2 4 5 2 3 4 5 4 2)

Score-Editor

E

&

00:00 00:01 00:02

œœ# œœœ# œœ# œœœ# œ œœœ# œ# œ œœ# œœ# œ# œœ# œ# œ œœœ# œ# œ œœœ# œ œœ#P1

score pitches rtms/times

always-more-little-included-rule

pmc

true/false 0

22

Figure 67: 1-05-05-always-more-little-included-rule

2.7 06-Distance-Rules

2.7.1 Distance-Rules

This menu has only one rule, which corresponds to the theory of morphological dis-
tance. Please look at the function distance in the Morphologie library for more details.

2.7.2 01-Distance-Rule

1.06.01 - DISTANCE-RULE
DISTANCE-RULE [1] is a morphological rule, based on the DISTANCE function of the
Morphologie library.
It asks to the engine those solutions having a given ’distance’ [a] with the pattern set in
[b].
In ’which?’ [c] you can chose if you want an equal distance ’=’, a smaller distance ’<’
or a bigger distance ’>’.

2.7 06-Distance-Rules 77

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

11
distance-rule

pmc

(1 2 3) 39

< true/false

0

arithm-ser

1

1

10
pwgl-repeat

3 patch

(E)

b --->

(E)

<--- a

(E)

c --->

Figure 68: 1-06-01-distance-rule

2.7.3 02-Dynamic-Distance-Rule

1.06.02 - DYNAMIC-DISTANCE-RULE
This patch enlarges the possible results of the preceding one, still about DISTANCE-
RULE based on the Morphogie library.
The aim is to produce a series of profiles, with the same length or not (this has to
be defined with the SWITCH [1]), each with different distance in reference to a given
profile [2].
The evolution of the distance through the profiles is defined in this case by a 2D-EDITOR
[3]. There must be as many samples points taken from the bpf than length values for
the profiles [a].
Both these values are going to the ’dynamic-distance-rule’ abstraction [4] that creates
as many Multi-PMC results than samples and length values. The model profile enters in
the abstraction’s third input and goes directly to the DISTANCE-RULE [b]
Here we chose to have a limited number of candidates [c], essentially a C-Major scale,
in order to make the several researches faster and the results closer.
Please evaluate the CHORD-EDITOR [5] and look at the successive results by scrolling
through the chords.

2.8 07-Structure-Rules 78

You can also control the results by evaluating the ’compare-distances’ abstraction [6]
and see if the result matches the result of the G-ROUND on the left.
Be careful, the distance-rule works better in ’<’ or ’>’ modes than in ’=’ mode. In this
example, the ’<’ mode was prefered because it seems more intuitive for dynamic use,
but you can use ’>’ mode as well. That’s why the actual distances of the generated
profiles (seen in ’compare-distances’ abstraction) can be a little lower than the one you
asked for.

Chord-Editor

E

&
?

w w w w w

chord pitches

2D-Editor

Eobjects active

pwgl-sample

object

7

g-scaling

vals?

50

80

g-round

l1?

value-box

(5 5 6 4 7 3 5)

dynamic-distance-rules

A

Chord-Editor

E1/7

&
?

w w w w w

chord pitches

pwgl-repeat

7 5

compare-distances

A

11

22 33

66

(E)

a --->

(E)

a --->

(E)

a --->

44

55

Figure 69: 1-06-02-dynamic-distance-rule

2.8 07-Structure-Rules

2.8.1 Structure-Rules

This part of the library is dedicated to the control of structures. The notion of a structure
is hard to define in this kind of software. In general I make the difference between a
list, a sequence and a structure. The interpretation of any phenomenon is articulated
under the form of structures. It means here that the rules will generate some sequences
but these sequences will be interpreted in function of a given context. In this sense, the
same rule here can produce a structure that is meaningful for a rhythm sequence and
another that is meaningful for an interval sequence.

2.8 07-Structure-Rules 79

2.8.2 01-Mk-Symbol-Structure-Rule

1.07.01 - FIND-APPLY-GLOBAL-AND-APPROX-SUM-RULE
MK-SYMBOL-STRUCTURE-RULE [1] asks the engine to put out a solution with a shape
identical or similar to the list defined in ’profile’ input [a].
I kept this rule, identical to MK-FIX-PROFILE-RULE, in order to let you know that a
same concept can be useful in several musical domains.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

more-rules

11

(E)

a --->

first

list

value-box

(a b c d e f g h i l m n o p q r s t u v z)

pwgl-repeat

count patch

mk-symbol-structure-rule

pmc

structure heuristic

1

value-box

(c i a o g i a c o m o)

length

arg1

no-repetition-rule

pmc

true/false 0

first

Figure 70: 1-07-01-mk-symbol-structure-rule

2.8.3 02-Find-Apply-Global-and-Approx-Sum-Rule

1.07.02 - FIND-APPLY-GLOBAL-AND-APPROX-SUM-RULE
FIND-APPY-GLOBAL-SUM-RULE [1] finds out a solution with elements having, summed
together, the same value put in ’sum’ input [a].
FIND-APPLY-GLOBAL-ABSOLUTE-SUM-RULE [2] does exactly the same but it considers
also negative values.
FIND-APPLY-APPROX-SUM-RULE [2] does quite the same but it includes also a value of
approximation (set in [b]), tolerated above or below the ’sum’ value.
FIND-APPLY-GLOBAL-ABSOLUTE-SUM-RULE [4] does exactly the same but it considers
also negative values.

2.8 07-Structure-Rules 80

Please use the SWITCH [c] in order to choose positive candidates only or both positive
and negative candidates.

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

11

(E)

a --->

first

pwgl-repeat

11 patch

find-apply-global-sum-rule

pmc

2 true/false

1

find-apply-approx-sum-rule

pmc

2 0.5

true/false 10

33

Score-Editor

E

&
1

44 Œ Œ ≈ œ .j œ

q = 60

œ ‰ .jj ≈ œ œ œ œ . œP1

& œ œ œ œ œ œ œ œ œ œ ‰j ŒP1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes (4 60)

:scale 1

:max-div 8

(E)

<--- b

find-apply-global-absolute-sum-rule

pmc

2 true/false

1

find-apply-approx-absolute-sum-rule

pmc

2 0.5

true/false 1

22
44

Candidates

A

(E)

<--- c

Figure 71: 1-07-02-find-apply-global-and-approx-sum-rule

2.8.4 03-Length-Sub-Group-Applied-Sum-Rule

1.07.03 - LENGTH-SUB-GROUP-APPLIED-SUM-RULE
LENGTH-SUB-GROUP-APPLIED-SUM-RULE [1] forces each sub-list of the solution to
have an applied sum equal to the value set in ’length?’ input [a].
You can control the result by evaluating the PWGL-MAP [2]. All the applied sum inside
each sub-list is equal to the number set in [a].

2.8 07-Structure-Rules 81

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

11

pwgl-repeat

4 patch

Score-Editor

E

&
1

44 œ . ≈j œ ‰j ‰ . œjj œ ‰ ≈jj

q = 60

≈‰ . œœ . ≈ œ œ œ‰ .jjP1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div8

g/

l1? 16

Candidates

A

(-1 -2 -3 1 2 3)

length-sub-group-applied-sum-rule

pmc

8 true/false

10

flat

lst

(E)

a --->

apply

+

arg

pwgl-enum

list

pwgl-map

enum patch

first

list

g-abs

l?

22

Figure 72: 1-07-03-length-sub-group-applied-sum-rule

2.8.5 04-Structured-Order-Sum-Rule

1.07.04 - STRUCTURED-ORDER-SUM-RULE
In candidates [a] you put, with Constraints symbols, the number of variables you are
looking for. Ex. : ?1 ?2 ?3 Then in [b] you put a list of indexes that has to be applied
by a POSN-MATCH function to the solution. Finally in sum [c] you put the value that
the elements of the solution, once added together according to the POSN-MATCH order,
have to produce.
STRUCTURED-ORDER-SUM-RULE [1] is very useful when you know the length of a
metrical musical passage. In this case let say that you have to fill 32 1/16 (it means two
full measure of (4 4)), using only three different values [a] which, summed together,
must follow a given order [b].
You can control the result by evaluating the G/ function [2].

2.8 07-Structure-Rules 82

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

11
(E)

a --->

first

list

pwgl-repeat

count patch

value-box

(1 2 3 4 5 6 7 8 9)

Score-Editor

E

&
1

44 œ œ œ œ œ œ œ œ

q = 60

œ œ œ œœ . œ œ œP1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div 8

(E)

<--- b
structured-order-sum-rule

pmc

candidates order

32 true/false

0

value-box

(?1 ?2 ?3)

value-box

(0 2 1 2 2 2 1 0 1)

length

arg1

posn-match

list l-nth

g/

l1? 16

(E)

c --->

22

Figure 73: 1-07-04-structured-order-sum-rule

2.8.6 05-Count-Positive-and-Negative-Rule

1.07.05 - COUNT-POSITIVE-RULE
COUNT-POSITIVE-RULE [1] obliges the solution to include a number of positive values
identical to its ’number’ value [a].
COUNT-NEGATIVE-RULE [2] does exactly the same with negative values.

2.8 07-Structure-Rules 83

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

11

(E)

a --->

first

list

pwgl-repeat

7 patch

Score-Editor

E

&
1

44 ‰ œj œ ≈ ≈j ‰ œj œ œ ‰
q = 60

P1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div 8

g/

l1? 16

count-positive-rule

pmc

4 true/false

0arithm-ser

-3

1

3
remove

0 sequence

count-negative-rule

pmc

3 true/false

0(E)

a --->

22

Figure 74: 1-07-05-count-positive-and-negative-rule

2.8.7 06-No-Consecutive-Rests-or-Pulses-Rule

1.07.06 - NO-CONSECUTIVE-RESTS-OR-PULSES
NOT-CONSECUTIVE-RESTS-RULE [1] forbids consecutive negatives values.
NOT-CONSECUTIVE-PULSES-RULE [2] forbids consecutive positive values.

2.8 07-Structure-Rules 84

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

11

first

list

pwgl-repeat

7 patch

Score-Editor

E

&
1

44 œ œ œ œ ≈ œ œ œ œ ≈ Œ
q = 60

P1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div 8

g/

l1? 16

arithm-ser

-3

1

3
remove

0 sequence

22
no-consecutive-rests-rule

pmc

true/false 0

no-consecutive-pulses-rule

pmc

true/false 0

Figure 75: 1-07-06-no-consecutive-rests-or-pulses-rule

2.8.8 07-Alternating-Positive-Negative-Rule

1.07.07 - ALTERNATING-POSITIVE-NEGATIVE-RULE
ALTERNATING-POSITIVE-NEGATIVE-RULE [1] obliges a positive number to be followed
by a negative number and vice versa.

2.8 07-Structure-Rules 85

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

11

first

list

pwgl-repeat

7 patch

Score-Editor

E

&
1

44 œ‰ .jj œ ‰j œ ≈ œ œ‰ .jj

q = 60

P1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div 8

g/

l1? 16

arithm-ser

-3

1

3
remove

0 sequence

alternating-positive-negative-rule

pmc

true/false 0

Figure 76: 1-07-07-alternating-positive-negative-rule

2.8.9 08-Alternating-plus-minus-First-or-Last-Elmt-Rule

1.07.08 - ALTERNATING-+/-FIRST-ELMT-RULE
ALTERNATING-+/-FIRST-ELMT-RULE [1] creates a list of sub-lists in which the FIRST
element is, alternatively, before positive then negative an so on.
The ALTERNATING-+/-LAST-ELMT-RULE [2] creates a list of sub-lists in which the LAST
element is, alternatively, before positive then negative an so on.
ATTENTION This rule requires list of lists as candidates to work. You can control the
result by evaluating the G/ function [3]

2.8 07-Structure-Rules 86

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

more-rules

11

pwgl-repeat

4 patch

Score-Editor

E

&
1

44 ‰ œ ≈jj
‰ œj œ ≈ ≈j ≈‰ .

q = 60

‰ œj ‰ . ≈ œ ‰ œ œ ‰ .jjP1

score pitches rtms/times

pitches-durs2simple

(60) durs

simple2score

simple

:time-signatures(4 4)

:metronomes(4 60)

:scale 1

:max-div 8

g/

l1? 16

Candidates

A

(-1 -2 -3 3 2 1)

alternating-+/-first-elmt-rule

pmc

true/false 0

alternating-+/-last-elmt-rule

pmc

true/false 0

22

length-sub-group-applied-sum-rule

pmc

8 true/false

10

flat

lst

33

Figure 77: 1-07-08-alternating-plus-minus-first-or-last-elmt-rule

2.8.10 09-Structure-Identity-Rule

1.07.09 - STRUCTURE-IDENTITY
TO BE DISCUSSED WITH ORJAN SANDRED

2.9 08-Matrix-Rules 87

to be discussed with Orjan Sandred energy-profile rule

Figure 78: 1-07-09-structure-identity-rule

2.9 08-Matrix-Rules

2.9.1 Matrix-Rules

This menu contains only two rules dealing with matrices. A matrix is a list of lists. A
matrix is also a rectangular arrangement of numbers, where the horizontal and vertical
lines are respectively called rows and columns.

2.9.2 01-Mk-Latin-Matrix-Rule

1.08.01 - MK-LATIN-MATRIX-RULE
MK-LATIN-MATRIX-RULE [1] creates a latin matrix like following :
1 3 2 4
2 1 4 3
3 4 1 2
4 2 3 1
What does it mean?... Simply that ther is no repetition in columns and in raws.

2.9 08-Matrix-Rules 88

ATTENTION : It works with list of lists. So please look at the ’Candidates’ abstraction
[a].

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

()

11

pwgl-repeat

3 patch

Candidates

A

mk-latin-matrix-rule

pmc

true/false 10

(E)

a --->

Figure 79: 1-08-01-mk-latin-matrix-rule

2.9.3 02-Chain-Common-Element-Lists-Rule

1.08.02 - CHAIN-COMMON-ELEMENT-LIST-RULE
CHAIN-COMMON-ELEMENT-LIST-RULE [1] looks for solutions of lists of lists in which
the end of a sub-list in equal to the beginning of the following list.
First, open the abstraction [2] called in this patch ’LISTS’. Can you understand it or no?
If not, please go back to the tutorials 1.01 and re-do them again. In any case this ab-
stractions asks for an arbitrary number of solutions (defined in with the PWGL-REPEAT
[3]) in which the first element has to be either 60 or 61, without any repetitions, and
the length of each solution is 7.
In [a] you set HOW MANY LAST elements of a sub-list have to be included in the HOW
MANY FIRST elements of the following one.
In this case I put 2. That means that the 2 last elements of the first sub-group list have
to be equal with the 2 first elements of the second sub-list; then the 2 last elements of
the second sub-list have to be equal to the 2 last elements of the third list, and so on.

2.9 08-Matrix-Rules 89

If you evaluate the CHORD-EDITOR [5], you can see each sub list (one by one) through-
out the CHORD-EDITOR option using your up and down keyboard shortcuts.
If you evaluate the CHORD-EDITOR [6] you can see all the solutions in one piece.
ATTENTION : IN THE HEURISTIC MODE IT DOES NOT WORK. WHY???

LISTS

A

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1
pwgl-repeat

4 patch

flat

l

Chord-Editor

E

&
?

w w# wn w w w# w# w# w# w wn w# wn w w w w# w w# w# wn w# w wn w w w# w#

chord pitches

Chord-Editor

E1/4

&
?

w w# w w wn w# w#

chord pitches

first

list

(E)

a --->

11

22

44

55 66

chain-common-element-lists-rule

pmc

2 true/false

1

Figure 80: 1-08-02-chain-common-element-lists-rule

2.9.4 03-Chain-More-Little-Common-Rule

1.08.03 - CHAIN-MORE-LITTLE-INCLUDED-COMMON-LISTS-RULE
CHAIN-MORE-LITTLE-INCLUDED-COMMON-LISTS-RULE [1] looks for solutions of
lists of lists in which the end of a sub-list in equal to the beginning of the following
sub-list. But in this case the length of the first elements and the last elements can be
different.
First, open the abstraction [2] called in this patch LISTS. Can you understand it or
no? If not, please go back to the tutorials 1.01 and re-do them again. In any case this
abstractions asks for an arbitrary number of solutions (defined with the PWGL-REPEAT
[3]) in which the first element has to be either 60 or 61, without any repetitions, and
the length of each solution is 7.
In [4] you define how many sub-lists you want to chain. (In this example they are 4).

2.9 08-Matrix-Rules 90

In [b] you set HOW MANY LAST elements of a sub-list have to be included in the HOW
MANY FIRST [a] elements of the following one. If [a] and [b] are equal, this rule [1]
looks for solutions having the same elements at the end of a sub-list to be included in
the beginning of the following one. The order of the common elements can be any.
If [a] is more little than [b], it means that all the elements in [a] have to be included
even within some elements that do not belong to [b]. If is [b] the more little, it means
that all the elements in [b] have to be included even within some elements that do not
belong to [a].
If you evaluate the CHORD-EDITOR [5], you can see each sub-list (one by one) through-
out the CHORD-EDITOR option using your up and down keys.
If you evaluate the CHORD-EDITOR [6] you can see all the solutions in a one piece.
ATTENTION: IN THE HEURISTIC MODE IT DOES NOT WORK. WHY???

LISTS

A

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1
pwgl-repeat

4 patch

flat

l

Chord-Editor

E

&
?

w w w w w# w# w# w# w# w wn wn w# w w w# w w# w# wn wn w# w w w# wn wn w

chord pitches

Chord-Editor

E1/4

&
?

w w w w w# w# w#

chord pitches

first

list

(E)

a --->

11

22

44

55 66

chain-more-little-included-common-lists-rule

pmc

2 3

true/false 1
(E)

<---b

Figure 81: 1-08-03-chain-more-little-common-rule

3. 0-MULTI-SCORE-PMC 91

3 0-Multi-Score-PMC

3.1 00-Introduction-to-Score-PMC

3.1.1 Introduction

This section is dedicated to explain how the Multi-Score-PMC works.

3.1.2 1-The-Rules-for-Multi-Score-PMC

2.00.1 - THE-RULES-FOR-MULTI-SCORE-PMC
The Multi-Score-PMC is a complex system dedicated to solve polyphonic and counter-
point musical problem. If you need to look for solutions for only one voice, the Multi-
PMC is sufficient, and even more efficient. However, as you’ll see in the next patches,
to generate musical expressions with rules you need the Multi-Score-PMC.
BE CAREFUL Sometimes the syntax of the Multi-Score-PMC seems to be the same as
the Multi-PMC. THIS IS NOT THE CASE. That’s why the rules for the Multi-PMC are
called just with a name invoking the related concept. On the contrary, the names of the
Multi-Score-PMC rules are always preceded by S-PMC.
Look at the two rules in this patch. [1] is the rule for the Multi-PMC called ALLOWED-
INTERVALS-RULE. [2] is the rule for the Multi-Score-PMC called S-PMC-ALLOWED-
INTERVALS-RULE. If you use the Multi-Score-PMC for a single voice, the result of these
two rules is strictly the same, but in this case it would be better to use the Multi-PMC.
As for all rules of this library, there is a true/false or heuristic menu [a]. If this menu
is set in the true/false mode the Multi-Score-PMC will apply strictly the given rule. On
the contrary, if the menu is set on heuristic the Multi-Score-PMC will apply the rule as
much as possible, according to its weight [b]. (PLEASE SEE ALSO (AND AGAIN) THE
PATCH 1.00.3-The-logical-conflict-and-the-heuristic-rules)
ATTENTION If you don’t have studied yet the Multi-PMC, you have no chance to under-
stand the Multi-Score-PMC. So, it is the case, please start this tutorial from the begin-
ning.

3.1 00-Introduction-to-Score-PMC 92

s-pmc-allowed-interval-rule

S-pmc

(1 5 7) absolute

:all true/false

1

allowed-intervals-rule

pmc

(-1 2 -3) :ABSOLUTE

true/false 0

(E)

<--- a

(E)

b --->

11

22

Figure 82: 2-00-1-The-rules-for-Multi-Score-PMC

3.1.3 2-The-Multi-Score-PMC

2.00.2 - THE-MULTI-SCORE-PMC
Here is the Multi-Score-PMC [1].
In [a] you have to connect the ’score’ output of a SCORE-EDITOR that will provide the
rhythmical structure of the searched solution.
In [b] you have to connect another SCORE-EDITOR (with its ’score’ output) in which
the solution will be stored and displayed.
In [c] you have to put the search-space.
In [d] you put the true/false rules.
In [e] the you put the heuristic rules.
In [f] you define if you want a random (T) or a sorted search ().
In [g] you choose how many solutions you are looking for.
In [h] you can set some particular data base.

3.1 00-Introduction-to-Score-PMC 93

Multi-Score-PMC

() ()

(60_72)

() ()

T 1 () ()

(E)

a --->

(E)

^
h

(E)

<--- b

(E)

^
g

(E)

c --->

(E)

d --->

(E)

<--- e

(E)

f --->

11

Figure 83: 2-00-2-The-Multi-Score-PMC

3.1.4 3-Multi-Score-PMC-Stantdard-Patch

2.00.3 - MULTI-SCORE-PMC-STANDARD-PATCH
Here I suggest you how to dispose the boxes in order to have as much as possible control
on the entire process to find solutions.
You have to accept (at this level) that the rhythm of the solution is given by a SCORE-
EDITOR. The rhythm can be provided by other calculations, or you could also have
written it by hand, within the SCORE-EDITOR. So [1] is just a sort of default starting
value. Without it the Multi-Score-PMC doesn’t work.
In the other SCORE-EDITOR [2] you’ll see the result when you evaluate the Multi-Score-
PMC. One of the main differences between the Multi-Score-PMC and the Multi-PMC is
that the first outputs its musical result (rhythm, pitches and expressions) in the SCORE-
EDITOR on the right [2] and not with its own output.
The COLLECT-RULES [3] works exactly as for the Multi-PMC. It is the collector for all
the rules you need. The order of insertion of the rules, or empty inputs (nil) do not
affect the result. The right output is connected to the true/false rule input and the left
to the heuristic rule input of the Multi-Score-PMC.
In the value-box [4] you can set the pitch search space in the ’expand-list’ syntax. It

3.1 00-Introduction-to-Score-PMC 94

means that if you put (60 72) the value box will output this arithmetic series : (60 61
62 63 64 65 66 67 68 69 70 71 72).
Please evaluate the Multi-Score-PMC [5] and look at the right SCORE-EDITOR [2] in
order to see the result. As in this patch the random mode [a] is set on T, for each
evaluation you get a random research.
ATTENTION : I suggest you this configuration at the very beginning. Later we will see
some variations concerning abstractions for rules or candidates.

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

nil

()

()

()

Score-Editor

E

&

1

4

4
œ#

œ
œ

œ

q = 60

œ#
œ#

œ# œ

P1

?

4

4
œ#

œ

œ#

œ

q = 60

œ

œ œ#
œ

P1

¬

L

score pitches rtms/times

11 22

33

44 55

(E)

a --->

Figure 84: 2-00-3-Multi-Score-PMC-stantdard-patch

3.1.5 4-S-PMC-Rule-Voice-Attribution

2.00.4 - S-PMC-RULE-VOICE-ATTRIBUTION
This patch shows how to apply a rule to one specific voice or to all voices. As before,
the left SCORE-EDITOR [1] is just needed to give a rhythmical structure for the result.
The right SCORE-EDITOR [2] prints out the result.
In the VALUE-BOX [3] you define the search-space for the two voices. BE CAREFUL :
The first sub-list defines the highest voice, the second defines the lowest.
In COLLECT-RULES [4] you can see the same S-PMC-INDEX-RULE [5] and [6] used
twice.

3.1 00-Introduction-to-Score-PMC 95

Use the SWITCH [c] to activate the higher S-PMC-INDEX-RULE [5] and note that with
the option :all [a], the two voices are forced to have a C (midi note 60) as a first note.
Then, turn it off and activate the lower rule, with the SWITCH [d] When you evaluate
the Multi-Score-PMC you’ll see that the rule is only applied to the second voice [b], so
that the first note of the bass voice is a C (midi note 60).

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

nil

()

more-rules

()

more-rules

()

Score-Editor

E

&

1

4

4

œ

œ œ

œ#

q = 60

œ#

œ œ œP1

?

4

4 œ

œ

œ
œ

q = 60

œ

œ#

œ#

œP1

¬

L

score pitches rtms/times

11 22

33 44

55
s-pmc-index-rule

S-pmc

1 60

:all true/false

1
(E)

a --->

s-pmc-index-rule

S-pmc

1 60

2 true/false

1
(E)

b --->

66

first

first

(E)

c --->

(E)

d --->

Figure 85: 2-00-4-s-pmc-rule-voice-attribution

3.1.6 5-S-PMC-Rule-Expressions-Recognition

2.00.5 - S-PMC-RULE-EXPRESSIONS-RECOGNITION
This patch shows you how to apply a rule to a specific voice or to all voices but only
when some expressions have been previously defined. In this case, as before, the
SCORE-EDITOR [1] gives only the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result.
In the VALUE-BOX [3] you define the search-space for the two voices. BE CAREFUL :
The first sub-list defines the highest voice, the second defines the lowest.
S-PMC-ALLOWED-PITCH-RULE [4] forces all voices (defined in [b] with :all) just to
include the notes C, D and E (set with midi values 60 62 64 [a]), but only when the
expression :group [c] has been defined in the SCORE-EDITOR [1]. Attention, the C, D

3.1 00-Introduction-to-Score-PMC 96

and E note can be in any octave.
S-PMC-ALLOWED-INTERVAL-RULE [5] obliges only the first voice (the highest, set in
[e]) to include minor and major seconds [d], but only when the expression :group has
been defined in the SCORE-EDITOR [1].
Please evaluate the Multi-Score-PMC and look at the result. For the first voice (the
highest), in correspondance with the :group expression, the C, D and E note can appears
in any octave but always with adjacent intervals. For the bass voice these same notes
can be anywhere with any interval.

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60
œ#

œ#
œ

œ#

P1

?

4

4 œ

œ
œ

œ#

q = 60
œ# œ

group

œ

œP1

¬

L

score pitches rtms/times

11 22

33

44

55

(E)

a --->

s-pmc-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 1

:group

(E)

c--->

s-pmc-allowed-interval-rule

S-pmc

(1 2) absolute

1 true/false

1

:group

(E)

d --->

(E)

e --->

(E)

<--- b

collect-rules

r1

()

()

more-rules

()

()

()

Figure 86: 2-00-5-s-pmc-rule-expressions-recognition

3.1.7 6-Logical-Conflict-between-Rules

2.00.6 - LOGICAL-CONFLICT-BETWEEN-RULES
If two rules are in conflict the Multi-Score-PMC outputs nil in the PWGL output.
In this patch two rules are in a logical conflict : we ask to the Multi-Score-PMC to find
out a solution with only the C, D and E notes [4] in any octave of the search space (set
in [a]) but at the same time we forbid [5] the solution NOT to have the same notes (set
in [b]).

3.2 01-Melodic-Rules 97

In this case no solution can be found, but in the SCORE-EDITOR’s [2] last initialisation
stays still printed out.
So BE CAREFUL ! When you see that in the printing out SCORE-EDITOR the result does
not have any change look also to the PWGL output. The reason can be double : there is
a logical conflict between rules (so in the PWGL output there is nil) or there is only one
possible result.
Open the ONLY-ONE-POSSIBLE-RESULT abstraction [7] and look at the solution.
When you evaluate the Multi-Score-PMC, the SCORE-EDITOR’s printed result [2]never
change. In this case there is no logical conflict but only one possible solution. If you
look at the PWGL output you will see that instead of nil you find the pitches of the result
: ((((60 62 60 62 60 62 60 62) (60 62 60 62 60 62 60 62)))).

Multi-Score-PMC

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

more-rules

()

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

11 22

33

44

55

(E)

a --->

s-pmc-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 1

s-pmc-not-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 1(E)

b --->

Only-one-possible-result

A

66

77

Figure 87: 2-00-6-logical-conflict-between-rules

3.2 01-Melodic-Rules

3.2.1 1-Generic-Poly-Rules

3.2.1.1 1-Several-Index-Rules

2.01.1.1 - S-PMC-SEVERAL-INDEX-RULES

3.2 01-Melodic-Rules 98

This patch shows several index rules for polyphonic parts. The SCORE-EDITOR [1]
only gives the rhythmical structure of the result. The SCORE-EDITOR [2] prints out the
result. In the VALUE-BOX [3] you define the search-space for the two voices. The first
sub-list is for the highest voice, the second for the lowest.
Apply S-PMC-INDEX-RULE [5] with the switch box (see previous patches). This rule
obliges :all solutions to have the first element (index 1 set in [a]) equal to 60.
S-PMC-INDEX-HIGHER-RULE forces an element, according to its index, to be higher
than 60 (in this example) for a given part. In this case it is set for all parts. (See also
patch 2.00.4 - S-PMC-RULE-VOICE-ATTRIBUTION).
S-PMC-INDEX-LOWER-RULE forces an element, according to its index, to be lower than
60 (in this example) for a given part.
Please evaluate the Multi-Score-PMC and look at the results. Change the SWITCHES in
order to apply only one rule at a time Attention, if two rules are in a logical conflict the
result is nil, but in the SCORE-EDITOR [2] the last result stays printed out.

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

more-rules

()

more-rules

()

Score-Editor

E

&

1

4

4 œ# œ

œ

œ

q = 60

œ#

œ

œ#

œP1

?

4

4

œ
œ

œ# œn

q = 60

œ

œ#

œ

œ#P1

¬

L

score pitches rtms/times

11 22

33

44

55
s-pmc-index-rule

S-pmc

1 60

:all true/false

1

s-pmc-index-higher-rule

S-pmc

1 60

:all true/false

1

s-pmc-index-lower-rule

S-pmc

1 60

:all true/false

1

(E)

a --->

first

first

first

66

77

Figure 88: 2-01-1-1-several-index-rules

3.2.1.2 2-Not-Higher-or-Lower-Rules

2.01.1.2 - NOT-HIGHER-OR-LOWER-RULES

3.2 01-Melodic-Rules 99

This patch shows you two complementary rules.
The SCORE-EDITOR [1] gives only the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. In the VALUE-BOX [3] you define the search-space for
the two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-NOT-HIGHER-RULE [5] forbids any value to be higher than a given number set
in [a].
S-PMC-NOT-LOWER-RULE [6] forbids any value to be lower than a given number set in
[a].

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

()

more-rules

Score-Editor

E

&

1

4

4

œ# œ œ# œ

q = 60

œ œ œ# œ

P1

?

4

4 œ

œ

œ#
œ

q = 60

œ#

œ#

œ#
œ#

P1

¬

L

score pitches rtms/times

11 22

33

44

55

(E)

a --->

first

first

66

s-pmc-not-higher-rule

S-pmc

60 :all

true/false 1

s-pmc-not-lower-rule

S-pmc

60 :all

true/false 1
(E)

a --->

Figure 89: 2-01-1-2-not-higher-or-lower-rules

3.2.1.3 3-No-Lcl-Repetition-Rule

2.01.1.3 - S-PMC-NO-LCL-REPETITION-RULE
This patch applies the rule [4] that do not accept consecutive repetitions of notes in the
given voices.
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. In the VALUE-BOX [3] you define the search-space for
the two voices. The first sub-list is for the highest voice, the second for the lowest.

3.2 01-Melodic-Rules 100

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

nil

more-rules

()

()

()

Score-Editor

E

&

1

4

4

œ#

œ

œ
œ

q = 60

œ

œ# œ# œn

P1

?

4

4

œ#

œ

œ#

œ

q = 60

œ#

œ#
œ

œ#
P1

¬

L

score pitches rtms/times

11 22

33
s-pmc-no-lcl-repetition-rule

S-pmc

:all true/false

1

44

Figure 90: 2-01-1-3-no-lcl-repetition-rule

3.2.1.4 4-N-Ascending-N-Descending-Rules

2.01.1.4 - N-ASCENDING-N-DESCENDING-RULES
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. In the VALUE-BOX [3] you define the search-space for
the two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-N-ASCENDING-RULE [4] obliges a given voice (or all voices, as always) not to
have more than 4 ascending notes (set in [a]).
S-PMC-N-DESCENDING-RULE [5] obliges a given voice (or all voices, as always) not to
have more than 4 descending notes (set in [a]).

3.2 01-Melodic-Rules 101

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

more-rules

Score-Editor

E

&

1

4

4

œ#

œ

œ#
œ

q = 60

œ

œ#

œ
œ#P1

?

4

4

œ#

œ œ

œ

q = 60

œ œ
œ# œ#

P1

¬

L

score pitches rtms/times

11 22

33

55

(E)

a --->

first

first
(E)

a --->

s-pmc-n-ascending-rule

S-pmc

4 :all

true/false 1

s-pmc-n-descending-rule

S-pmc

4 :all

true/false 1

44

Figure 91: 2-01-1-4-n-ascending-n-descending-rules

3.2.2 2-Intervals-Poly-Rules

3.2.2.1 1-Allowed-Not-Allowed-Interval-Rules

2.01.2.1 - ALLOWED-NOT-ALLOWED-INTERVAL-RULES
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. In the VALUE-BOX [3] you define the search-space for
the two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-ALLOWED-INTERVAL-RULE [4] outputs a solution having only the intervals en-
tered in the ’intervals’ input [a]. With the menu ’absolute?’ you can choose if the
intervals are in absolute value or not.
S-PMC-NOT-ALLOWED-INTERVAL-RULE [5] outputs a solution without any of the in-
terval defined in ’intervals’ [a].
With the menu ’absolute?’, you can choose if the intervals are in absolute value or not.
Please use the SWITCHs to activate the rules, then evaluate the Multi-Score-PMC to
obtain a result.

3.2 01-Melodic-Rules 102

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

()

more-rules

()

Score-Editor

E

&

1

4

4
œ œ œ

œ

q = 60

œ#
œ œ œn

P1

?

4

4
œ#

œ œ# œ

q = 60

œ#
œ# œ

œ#
P1

¬

L

score pitches rtms/times

11 22

33 55

(E)

a --->

first

first

(E)

a --->

44
s-pmc-allowed-interval-rule

S-pmc

(1 2 3) absolute

:all true/false

1

s-pmc-not-allowed-interval-rule

S-pmc

(1 2 3) absolute

:all true/false

1

Figure 92: 2-01-2-1-allowed-not-allowed-interval-rules

3.2.2.2 2-Interval-Bigger-Smaller-Rules

2.01.2.2 - INTERVAL-BIGGER-SMALLER-RULES
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. In the VALUE-BOX [3] you define the search-space for
the two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-INTERVAL-BIGGER-RULE [4] outputs a solution including only intervals bigger
than the value defined in the ’interval’ input [a].
S-PMC-INTERVAL-SMALLER-RULE [5] outputs a solution including only intervals
smaller than the value defined in the ’interval’ input [a].
Please use the SWITCHs to activate the rules, then evaluate the Multi-Score-PMC to
obtain a result.

3.2 01-Melodic-Rules 103

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

more-rules

()

Score-Editor

E

&

1

4

4

œ#
œ#

œ

œ#

q = 60

œ#

œ

œ

œ

P1

?

4

4

œ œ
œ#

œ

q = 60

œ

œ#

œ

œP1

¬

L

score pitches rtms/times

11 22

33

55

(E)

a --->

first

first
(E)

a --->

44
s-pmc-interval-bigger-rule

S-pmc

9 :all

true/false 1

s-pmc-interval-smaller-rule

S-pmc

9 :all

true/false 1

Figure 93: 2-01-2-2-interval-bigger-smaller-rules

3.2.2.3 3-No-Reached-Interval-Rule

2.01.2.3 - S-PMC-NO-REACHED-INTERVAL-RULE
The SCORE-EDITOR [1] gives only the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. The VALUE-BOX [3] define the search-space for the
two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-NO-REACHED-INTRV-RULE [4] obliges a solution NOT to reach a given interval
[b] within a given number of notes [a].

3.2 01-Melodic-Rules 104

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

()

more-rules

Score-Editor

E

&

1

4

4 œ#
œ#

œ œ#

q = 60
œ#

œ
œ

œ

P1

?

4

4

œ
œ œ#

œ#

q = 60

œ
œ# œn

œ

P1

¬

L

score pitches rtms/times

11 22

33

s-pmc-allowed-interval-rule

S-pmc

(1 3 4 5 6 7) absolute

:all true/false

1

(E)

a --->

44
s-pmc-no-reached-intrv-rule

S-pmc

3 11

:all heuristic

1

(E)

<--- b

Figure 94: 2-01-2-3-no-reached-interval-rule

3.2.3 3-Pitch-Poly-Rules

3.2.3.1 1-Allowed-Not-Allowed-Pitch-Rule

2.01.3.1 - ALLOWED-NOT-ALLOWED-PICTH-RULE
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. The VALUE-BOX [3] define the search-space for the
two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-ALLOWED-PITCH-RULE [4] forces the solution to be constitued only by pitches
(in modulo 12) entered in the ’pitch’ input [a].
S-PMC-NOT-ALLOWED-PITCH-RULE [5] forbids the solution to include any pitch (in
modulo 12) entered in the ’pitch’ input [a].
Please use the SWITCHs to choose which rule you want to activate, then evaluate the
Multi-Score-PMC to generate a result.

3.2 01-Melodic-Rules 105

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((55_84) (36_66))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

()

more-rules

()

Score-Editor

E

&

1

4

4 œ#

group

œ

œ

œ#

q = 60

œ

œ#

œ

œ

P1

?

4

4 œ

œ#

œ

œ

q = 60
œ

œ#

group

œ

œ
P1

¬

L

score pitches rtms/times

11 22

33

44

55

(E)

a --->

s-pmc-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 1

s-pmc-not-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 1(E)

b --->

first

first

Figure 95: 2-01-3-1-allowed-not-allowed-pitch-rule

3.2.3.2 2-Allowed-Not-Allowed-Pitch-Class-Rule

2.01.3.2 - ALLOWED-NOT-ALLOWED-PITCH-CLASS-SUB-GROUP-RULE
The SCORE-EDITOR [1] only gives the rhythmical structure of the result. The SCORE-
EDITOR [2] prints out the result. The VALUE-BOX [3] define the search-space for the
two voices. The first sub-list is for the highest voice, the second for the lowest.
S-PMC-ALLOWED-PITCH-RULE [4] forces the solution to be constitued only by pitches
(in modulo 12) entered in the ’pitch’ input [a].
S-PMC-NOT-ALLOWED-PITCH-CLASS-SUB-GROUP-RULE [5] outputs a solution in
which the PC-set (for instance minor triad) indicated in ’pitch’ will NOT be allowed
in any octave. That means that I’m looking for a solution without any minor triad.
S-PMC-ALLOWED-PITCH-CLASS-SUB-GROUP-RULE [6] outputs a solution in which the
PC-set (for instance minor triad) indicated in ’pitch’ will be allowed in any octave but
also including other notes. That means that I’m looking for a solution including a minor
triad.
Please use the SWITCHs to choose which rule you want to activate, then evaluate the
Multi-Score-PMC to obtain a result.

3.2 01-Melodic-Rules 106

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

more-rules

()

()

more-rules

11 22

33

44 55

(E)

a --->

(E)

b --->

first

first

s-pmc-not-allowed-pitch-class-sub-group-rule

S-pmc

(60 63 67) :all

true/false 1

Score-Editor

E

&

1

4

4
œ#

group

œ
œ

œ

q = 60

œ

œ œ#
œP1

?

4

4
œ#

œ

œ œ

q = 60

œ
œ

group

œ#
œ

P1

¬

L

score pitches rtms/times

s-pmc-allowed-pitch-class-sub-group-rule

S-pmc

(60 63 67) :all

true/false 1

s-pmc-allowed-pitch-rule

S-pmc

(60 62 63 65 67):all

true/false 1

66

(E)

c --->

Figure 96: 2-01-3-2-allowed-not-allowed-pitch-class-rule

3.2.4 4-Resolution-Poly-Rules

3.2.4.1 1-Tone-Not-Tone-Resolution-Rule

2.01.4.1 - S-PMC-TONE-RESOLUTION-RULE
S-PMC-TONE-RESOLUTION-RULE [4] is like the ’sensibile’ rule. In this case if a B note
[a] appears, it has to be followed by a C note [b].
S-PMC-NOT-TONE-RESOLUTION-RULE [5] does the contrary.
ATTENTION With these two rules (S-PMC-TONE-RESOLUTION-RULE and S-PMC-NOT-
TONE-RESOLUTION-RULE) you can put a list in [b] so that a single pitch can or cannot
be followed by a list of possible pitches.

3.2 01-Melodic-Rules 107

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

more-rules

11 22

33

55

(E)

a --->

first

Score-Editor

E

&

1

4

4

œ

group

œ
œ œ

q = 60

œ œ

œ œ
P1

?

4

4
œ œ œ

œ

q = 60

œ

œ

group

œ

œ

P1

¬

L

score pitches rtms/times

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

s-pmc-tone-resolution-rule

S-pmc

11 (0)

:all true/false

1

value-box

(60 62 64 65 67 69 71)

(E)

<--- b

s-pmc-not-tone-resolution-rule

S-pmc

11 (0)

:all true/false

1

s-pmc-not-allowed-interval-rule

S-pmc

(11) absolute

:all true/false

1

first

(E)

a --->

(E)

<--- b

44

Figure 97: 2-01-4-1-tone-not-tone-resolution-rule

3.2.4.2 2-Jump-Resolution-Rule

2.01.4.2 - S-PMC-JUMP-RESOLUTION-RULE
S-PMC-JUMP-RESOLUTION-RULE [4] makes sure that if there’s a jump bigger than an
augmented fourth [a], the next interval has to be smaller than a major second [b] and
in the opposite direction.

3.2 01-Melodic-Rules 108

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

nil

more-rules

()

more-rules

()

11 22

33

44

(E)

a --->

first

Score-Editor

E

&

1

4

4

œ

group

œ

œ

œ

q = 60

œ
œ œ

œ
P1

?

4

4

œ œ œ

œ

q = 60

œ œ

group

œ
œ

P1

¬

L

score pitches rtms/times

(E)

<--- b

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

value-box

(60 62 64 65 67 69 71)

s-pmc-jump-resolution-rule

S-pmc

5 2

:all true/false

1

Figure 98: 2-01-4-2-jump-resolution-rule

3.2.5 5-Shaping-Poly-Rules

3.2.5.1 1-Given-Voice-Rule

2.01.5.1 - S-PMC-GIVEN-VOICE-RULE
The S-PMC-GIVEN-VOICE-RULE [4] obliges the pitches of the second voice set in [b]
(the lowest in this example), to reproduce the sequence from the SCORE-EDITOR [a].
Pay attention! A voice can be polyphonic: for this reason we have chosen to call this
function S-PMC-GIVEN-VOICE-RULE. But if you use monodic voice, this function works
as the MK-FIX-PROFILE-RULE for the Multi-PMC. (Look at the tutorial 1.04.03-mk-fix-
profile-rule.pwgl)

3.2 01-Melodic-Rules 109

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ

œ

œ
œ

œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

()

()

more-rules

11 22

33

44

(E)

a --->

first

Score-Editor

E

&

1

4

4 œ

group

œ

œ
œ

q = 60

œ

œ

œ œ

P1

?

4

4 œ
œ œ

œ
œ œ

q = 60

œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 2

value-box

(60 62 64 65 67 69 71)

(E)

<--- b

Score-Editor

E

?

1

4

4 œ
œ

œ
œ
œ

œ

q = 60

œ œ

group

œ œ

P1

score pitches rtms/times

s-pmc-given-voice-rule

S-pmc

given-voice 2

true/false 1

pitch-extract-from-score-editor

S-pmc

complex-list mensural

Figure 99: 2-01-5-1-given-voice-rule

3.2.5.2 2-Mk-Profile-Rule

2.01.5.2 - S-PMC-MK-FIX-PROFILE-RULE
S-PMC-MK-PROFILE-RULE [4] obliges a given voice (in this case the lowest set in [b])
to follow strictly (true/false) or as much as possible (heuristic) the shape of the bpf [a].
In this case, the rule is used in true/false mode, so the lowest voice is totally fixed, but
the highest voice remains untouched.
Please make sure that the ’curve-min’ [c] and ’curve-max’ [d] inputs are set in the good
interval according to the voice you want to constrain.

3.3 02-Harmonic-Rules 110

Multi-Score-PMC

1

in-score res-score

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

group

œ œ œ

q = 60

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60
œ œ

group

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

nil

()

more-rules

11 22

33 (E)

a --->

Score-Editor

E

&

1

4

4
œ#

group

œ
œ œ

q = 60

œ
œ œ# œP1

?

4

4 œ
œ#

œ
œ

q = 60
œ

œ#

group

œ#

œP1

¬

L

score pitches rtms/times

(E)

b --->

44
s-pmc-mk-profile-rule

S-pmc

48 60

8 profile

2 true/false

2

2D-Editor

Eobjects active

(E)

c --->

(E)

<--- d

Figure 100: 2-01-5-2-mk-profile-rule

3.3 02-Harmonic-Rules

3.3.1 01-Index-Allowed-Harmony

2.02.01 - S-PMC-INDEX-ALLOWED-&-NOTALLOWED-HARMONY-RULE
In the SCORE-EDITOR [1] you enter the rhythmical structure for the solution. In this
patch, the result will be printed out in the same SCORE-EDITOR. (See also in the Ex-
amples ’WHEN-TO-USE-TWO-SCORE-EDITORS’).
In the VALUE-BOX [2] you define the range for the four voice search-space. Remember
that the first voice is (in this case) the soprano and the last, the bass voice.
S-PMC-INDEX-ALLOWED-HARMONY-RULE [3] obliges the solution to follow the har-
mony defined in [a], but only on the index defined in [b].
In this example, the solution must produce C-Major chords (modulo 12) at measures 1
and 3.
S-PMC-INDEX-NOT-ALLOWED-HARMONY-RULE [4] does the opposite.

3.3 02-Harmonic-Rules 111

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

r1

11

22

33

(E)

<---a

Chord-Editor

E

&

?

w
w

w

chord pitches

value-box

((66_80) (56_72) (48_66) (36_60))

44

s-pmc-index-allowed-harmony-rule

S-pmc

harmony? i6

true/false 1

Score-Editor

E

&

1

4

4 œ#
œ œ

œ

q = 60

5

4

œ œ

œ œ
œ#

P1

&

4

4 œ

œ#

œ œ

q = 60

5

4

œ#

œ œ#
œ

œ#P1

?

4

4

œ

œ# œ# œ

q = 60

5

4

œ

œ œ

˙

P1

?

4

4
œ œ

œ

œ

q = 60

5

4 œ

œ

œ#

œ
œP1

¬

L

score pitches rtms/times

(E)

<---b

(E)

<---c

(E)

<---a

s-pmc-index-not-allowed-harmony-rule

S-pmc

harmony? i6

true/false 1

(E)

<---b

Figure 101: 2-02-01-index-allowed-harmony

3.3.2 02-Allowed-&-Not-Harmony-in-Given-Measures

2.02.02 - S-PMC-ALLOWED-&-NOT-HARMONY-IN-GIVEN-MEASURES-RULE
In the SCORE-EDITOR [1] you enter the rhythmical structure for the solution. In this
patch, the result will be printed out in the same SCORE-EDITOR. (See also in the Ex-
amples ’WHEN-TO-USE-TWO-SCORE-EDITORS’).
In the VALUE-BOX [2] you define the range for the four voice search-space. Remember
that the first voice is (in this case) the soprano and the last, the bass voice.
S-PMC-ALLOWED-HARMONY-IN-GIVEN-MEASURES-RULE [3] obliges the solution to
follow the harmony defined in [a], but only at the measures defined in [b].
In this example, the solution must produce C-Major chords (modulo 12) at measures 1
and 3.
S-PMC-NOT-ALLOWED-HARMONY-IN-GIVEN-MEASURES-RULE [4] does the opposite.

3.3 02-Harmonic-Rules 112

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

value-box

((66_80) (56_72) (48_66) (36_60))

Score-Editor

E

&

1

4

4

œ

œ

œ
œ

q = 60

œ#
œ# œ#

œ
œ œ

œ œ

P1

&

4

4
œ œ

œ

œ

q = 60

œ œ
œ œ

œ
œ œ

œ

P1

?

4

4

œ
œ

œ

œ

q = 60
œ

œ œ#

œ
œ

œ

œ
œ

P1

?

4

4

œ

œ

œ œ

q = 60

œ# œ œ œ

œ

œ

œ
œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

11

22

33

(E)

<---a

(E)

<---b

s-pmc-allowed-harmony-in-given-measures-rule

S-pmc

harmony? (1 3)

true/false 1

Chord-Editor

E

&

?

w
w

w

chord pitches

s-pmc-not-allowed-harmony-in-given-measures-rule

S-pmc

harmony? (1 3)

true/false 1

44

Figure 102: 2-02-02-allowed-not-harmony-in-given-measures

3.3.3 03-Allowed-&-Not-Harmony-on-Beat

2.02.03 - S-PMC-ALLOWED-&-NOT-HARMONY-ON-BEAT-RULE
S-PMC-ALLOWED-HARMONY-ON-BEAT-RULE [3] obliges the solution to follow the har-
mony set in [a], but only on the beats defined in [b].
In this example, a C-Major chord (modulo 12) is produced on the third beat of each
measures, but also in the fifth one. Because only the second measure has 5 beats, the
fifth beat will be concerned only in the second measure.
The S-PMC-NOT-ALLOWED-HARMONY-ON-BEAT-RUL [4] does the contrary.

3.3 02-Harmonic-Rules 113

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

value-box

((66_80) (56_72) (48_66) (36_60))

Score-Editor

E

&

1

4

4 œ

œ#

œ œ

q = 60

5

4 œ# œ

œ

œ
œ 4

4
œ œ#

œ

œP1

&

4

4

œ

œ

œ
œ

q = 60

5

4 œ#
œ

œ œ#
œ 4

4 œ œ# œ œ#P1

?

4

4

œ œ

œ
œ

q = 60

5

4

œ# œ

œ œ

œ

4

4

œ œ œ
œP1

?

4

4

œ#

œ# œ

œ

q = 60

5

4
œ#

œ

œ
œ

œ

4

4

œ

œ#

œ

œn

P1

¬

L

score pitches rtms/times

collect-rules

r1

11

22

33

(E)

<---a

(E)

<---b

Chord-Editor

E

&

?

w
w

w

chord pitches

44

s-pmc-allowed-harmony-on-beat-rule

S-pmc

harmony? (3 5)

true/false 1

s-pmc-not-allowed-harmony-on-beat-rule

S-pmc

harmony? (3)

true/false 1

Figure 103: 2-02-03-allowed-not-harmony-on-beat

3.3.4 04-Allowed-&-Not-Harmonic-Interval

2.02.04 - S-PMC-ALLOWED-&-NOT-ALLOWED-HARMONIC-INT-RULE
S-PMC-ALLOWED-HARMONIC-INT-RULE [3] allows only a given set of harmonic inter-
vals, defined in ”intervals’ input, between every parts.
S-PMC-NOT-ALLOWED-HARMONIC-INT-RULE [3] forbids a given set of harmonics in-
tervals, defined in ”intervals’ input, between every parts.

3.3 02-Harmonic-Rules 114

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4 œ#
œ#

œ œn

q = 60

5

4 œ œ
œ#

œ
œ# 4

4
œ

œ#
œ#

œ#
P1

&

4

4

œ#

œ
œ#

œn

q = 60

5

4
œ

œ
œ œ

œ
4

4 œ#

œ#

œ

œ

P1

?

4

4

œ#

œ#
œ#

œn

q = 60

5

4

œ œ
œ

œ
œ#

4

4

œ

œ#

œ#

œ#

P1

?

4

4

œ#
œ

œ œn

q = 60

5

4

œ œ
œ

œ œ
4

4

œ#
œ#

œ

œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

11

22

33

(E)

a--->

value-box

((66_80) (56_72) (48_66) (36_60)) s-pmc-not-allowed-harm-int-rule

S-pmc

(0 2) true/false

1

s-pmc-allowed-harm-int-rule

S-pmc

(0 2 5 7 12 14) true/false

1

44

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

Figure 104: 2-02-04-allowed-not-harmonic-interval

3.3.5 05-All-Notes-Included

2.02.05 - S-PMC-ALL-NOTES-INCLUDED-RULE
S-PMC-ALL-NOTES-INCLUDED-RULE [3] obliges each harmony to have exactly the
number of different pitches set in [a].
In this example, because of the S-PMC-ALLOWED-PITCH-RULE [4], only four notes
are allowed (C, D, E and F). S-PMC-ALL-NOTES-INCLUDED-RULE [3] creates solutions
including all the four notes in each chord.

3.3 02-Harmonic-Rules 115

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

w

q = 60

5

4

œ
œ œ

œ
œ 4

4
œ

œ œ œ

P1

&

4

4

œ
œ

œ

œ

q = 60

5

4
œ

œ œ
œ œ

4

4

w

P1

?

4

4
œ

œ œ œ

q = 60

5

4

œ
œ œ

˙ 4

4

œ œ

œ

œ

P1

?

4

4
œ œ

œ

œ

q = 60

5

4
œ

œ

œ
œ œ 4

4
œ

œ

œ

œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

11

22

33

(E)

a--->

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

w w w w

chord pitches

value-box

((66_80) (56_72) (48_66) (36_60))
s-pmc-all-notes-included-rule

S-pmc

4 true/false

1

44

Figure 105: 2-02-05-all-notes-included

3.3.6 06-Index-All-Notes-Included

2.02.06 - INDEX-ALL-NOTES-INCLUDED
In the SCORE-EDITOR [1] you enter the rhythmical structure for the solution. In this
patch, the result will be printed out in the same SCORE-EDITOR. (See also in the Ex-
amples ’WHEN-TO-USE-TWO-SCORE-EDITORS’).
In the VALUE-BOX [2] you define the range for the four voice search-space. Remember
that the first voice is (in this case) the soprano and the last, the bass voice.
S-PMC-INDEX-ALLOWED-HARMONY-RULE [3] obliges the solution to follow the har-
mony defined in [a], but only on the index defined in [b]. In this case pitches are (in
modulo 12) 0, 4, 7 and 9.
S-PMC-INDEX-ALL-NOTES-INCLUDED-RULE [4] obliges the solution to have all the
pitches defined in [a] on the index defined in [b].
ATTENTION: in fact the S-PMC-INDEX-ALL-NOTES-INCLUDED-RULE [4] asks for a so-
lution having a number of different pitches set in [c].

3.3 02-Harmonic-Rules 116

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

r1

more-rules

()

11

22

33

(E)

<---a

Chord-Editor

E

&

?

w
w

w w

chord pitches

value-box

((66_80) (56_72) (48_66) (36_60))

44
s-pmc-index-all-notes-included-rule

S-pmc

i6 4

true/false 1

s-pmc-index-allowed-harmony-rule

S-pmc

harmony? i6

true/false 1

Score-Editor

E

&

1

4

4

œ#

œ

œ#
œ

q = 60

5

4 œ#

œ

œ#

œ

œ

4

4 œ
œ#

œ
œP1

&

4

4

œ#

œ#

œ
œ

q = 60

5

4

œ#
œ

œ

œ

œ
4

4
wP1

?

4

4

œ
œ

œ#

œ#

q = 60

5

4

œ

œ

œ

˙ 4

4

œ# œ
œ

œn

P1

?

4

4
œ#

œ

œ

œ

q = 60

5

4

œ#

œ

œ#

œ#
œ#

4

4 œ

œ

œ

œ

P1

¬

L

score pitches rtms/times

(E)

--->b

(E)

<---c

(E)

<---a

(E)

<---b

(E)

<---c

Figure 106: 2-02-06-Index-all-notes-included

3.3.7 07-All-Notes-Included-on-Beat

2.02.07 - S-PMC-ALL-NOTES-INCLUDED-ON-BEAT-RULE
S-PMC-ALL-NOTES-INCLUDED-ON-BEAT-RULE [3] obliges the solution to have, on
each beat set in [a], the number of different pitches set in [b].

3.3 02-Harmonic-Rules 117

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
w

q = 60

5

4

œ
œ

œ œ œ 4

4

œ
œ œ œ

P1

&

4

4 œ
œ œ

œ

q = 60

5

4
œ œ

œ œ
œ

4

4
w

P1

?

4

4

œ

œ

œ
œ

q = 60

5

4
œ œ œ ˙

4

4

œ

œ œ
œP1

?

4

4

œ œ

œ

œ

q = 60

5

4

œ

œ

œ

œ

œ

4

4

œ

œ

œ

œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

11

22

33

(E)

a--->

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

w w w w

chord pitches

value-box

((66_80) (56_72) (48_66) (36_60))
s-pmc-all-notes-included-on-beat-rule

S-pmc

(3) 4

true/false 1
(E)

<---b

Figure 107: 2-02-07-all-notes-included-on-beat

3.3.8 08-Forbidden-Inversion

2.02.08 - S-PMC-FORBIDDEN-INVERSIONS-RULE
S-PMC-FORBIDDEN-INVERSIONS-RULE [3] forbids a solution to include one or more
chord inversions. The forbidden inversions are set in [a].
Please evaluate the Multi-Score-PMC and observe that the G note will never appear in
the bass voice when a C-major chord appears.
ATTENTION This rule does not work with heterogeneous rhythmical values. Open the
’See-when-does-not-work’ abstraction to see it.

3.3 02-Harmonic-Rules 118

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
œ œ

œ œ

q = 60

5

4

œ
œ

œ
œ œ 4

4 œ œ

œ

œP1

&

4

4

œ

œ

œ
œ

q = 60

5

4
œ œ

œ
œ

œ

4

4

œ

œ

œ

œP1

?

4

4

œ œ

œ œ

q = 60

5

4

œ

œ

œ œ

œ

4

4

œ
œ

œ œ

P1

?

4

4

œ œ

œ

œ

q = 60

5

4
œ

œ

œ

œ œ
4

4
œ

œ

œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

()

()

11

22

33

(E)

a--->

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-forbidden-inversions-rule

S-pmc

database true/false

1

text-box

E

((7 0 4) (7 4 0)
(9 2 5) (9 5 2)
(0 5 9) (0 9 5)
(4 0 9) (4 9 0)
(2 11 7) (2 7 11)
(0 9 4) (0 4 9))

s-pmc-all-notes-included-rule

S-pmc

3 true/false

1

See-when-does-not-work

A

Figure 108: 2-02-08-forbidden-inversion

3.3.9 09-Preferred-Duplicates

2.02.09 - S-PMC-PREFERRED-DUPLICATE-RULE
S-PMC-PREFERRED-DUPLICATE-RULE [3] makes sure that the solution, having four
notes each time but only three notes per chord, will choose the pitch (in modulo 12) set
in [a] as the preferred duplicate.

3.3 02-Harmonic-Rules 119

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ
œ œ œ

q = 60

5

4
œ œ

œ

œ

œ 4

4 œ
œ œ œP1

&

4

4

œ œ

œ
œ

q = 60

5

4 œ œ
œ

œ
œ

4

4
œ

œ

œ

œP1

?

4

4

œ
œ œ

œ

q = 60

5

4 œ
œ

œ
œ

œ
4

4

œ
œ œ

œP1

?

4

4

œ

œ

œ
œ

q = 60

5

4

œ

œ

œ

œ

œ
4

4 œ

œ

œ

œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

11

22

33
(E)

a--->

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙
˙
˙

chordpitches

value-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-all-notes-included-rule

S-pmc

3 true/false

1

s-pmc-preferred-duplicate-rule

S-pmc

dups true/false

1

num-box

7

num-box

0

num-box

4

Figure 109: 2-02-09-preferred-duplicates

3.3.10 10-Allowed-Harmony

2.02.10 - S-PMC-ALLOWED-HARM-RULE
S-PMC-ALLOWED-HARM-RULE [3] defines which chords are admitted in the solution.
Please open the ’Allowed-chords’ abstraction [a]. In [b] you define the chords you want
to be allowed in the solution.
Then it is just a set-theory organization. In [c] are defined the possible transpositions
of the sets. In [d] I define also the possible sub-groups of a chord that can be allowed.

3.3 02-Harmonic-Rules 120

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
œ œ

œ œ

q = 60

5

4

œ œ œ œ
œ

4

4 œ
œ œ œP1

&

4

4 œ

œ

œ œ

q = 60

5

4 œ
œ œ œ

œ

4

4

œ
œ œ

œP1

?

4

4

œ
œ

œ

œ

q = 60

5

4

œ

œ

œ œ
œ 4

4

œ

œ œ œ

P1

?

4

4

œ œ

œ
œ

q = 60

5

4

œ

œ
œ œ œ 4

4
œ

œ

œ

œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

11

22

33

(E)

a--->

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-all-notes-included-rule

S-pmc

3 true/false

1

s-pmc-allowed-harm-rule

S-pmc

mainchords chord-subsets

true/false 1

Allowed-chords

A

Figure 110: 2-02-10-allowed-harmony

3.3.11 11-Chord-Succession

2.02.11 - S-PMC-CHORDS-SUCCESSION-RULE
S-PMC-CHORDS-SUCCESSION-RULE [6] looks for solutions having the chord-
successions set in ’database’ input [a].
Please open the ’Chords-successions’ abstraction. This patch repeats 6 times the same
procedure. In a CHORD-EDITOR [b] you define a chord and in a list of CHORD-
EDITORS [c] you define the chords allowed to follow the one set in [b].
ATTENTION The chords are entered as midi notes in CHORD-EDITORS, but S-PMC-
CHORDS-SUCCESSION-RULE recognizes only the Set-Theory format.

3.3 02-Harmonic-Rules 121

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ

œ
œ œ

q = 60

5

4 œ œ
œ œ œ 4

4
œ

œ œ œP1

&

4

4
œ œ œ

œ

q = 60

5

4
œ

œ
œ

œ

œ

4

4
œ

œ
œ œP1

?

4

4

œ
œ

œ

œ

q = 60

5

4

œ

œ œ œ œ
4

4

œ
œ

œ
œ

P1

?

4

4 œ

œ
œ

œ

q = 60

5

4
œ

œ œ

œ

œ 4

4
œ œ

œ

œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

more-rules

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chord pitchesvalue-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-all-notes-included-rule

S-pmc

3 true/false

1

s-pmc-allowed-harm-rule

S-pmc

mainchords chord-subsets

true/false 1

Allowed-chords

A

s-pmc-chords-succession-rule

S-pmc

database true/false

1

Chord-successions

A

(E)

a--->

Figure 111: 2-02-11-chord-succession

3.3.12 12-Allowed-Interval-between-2-Parts

2.02.12 - S-PMC-INTV-BETWEEN-2-PARTS-RULE
S-PMC-INTV-BETWEEN-2-PARTS-RULE [3] deals with vertical intervals between two
voices.
In the input [a] you define a part and in [b] another one. Then in [c] you set which
intervals are allowed between the voices defined in [a] and [b].

3.3 02-Harmonic-Rules 122

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
œ œ œ œ

q = 60

5

4
œ œ œ œ œ

4

4 œ œ œ œP1

&

4

4 œ œ œ œ

q = 60

5

4 œ œ œ œ œ

4

4
œ œ œ œP1

?

4

4

œ œ œ œ

q = 60

5

4

œ œ œ œ œ

4

4

œ œ œ œ

P1

?

4

4

œ œ œ œ

q = 60

5

4

œ œ œ œ œ

4

4

œ œ œ œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

more-rules

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-intv-between-2-parts-rule

S-pmc

3 4

(3 4) true/false

1

s-pmc-intv-between-2-parts-rule

S-pmc

1 2

(3 4) true/false

1

s-pmc-intv-between-2-parts-rule

S-pmc

2 3

(3 4) true/false

1

(E)

a--->

(E)

a--->

(E)

a--->

(E)

<---b

(E)

<---b

(E)

<---b

(E)

c--->

(E)

c--->

(E)

c--->

Figure 112: 2-02-12-allowed-interval-between-2-parts

3.3.13 13-Not-Allowed-Interval-between-2-Parts

2.02.13 - S-PMC-NOT-INTV-BETWEEN-2-PARTS-RULE
S-PMC-NOT-INTV-BETWEEN-2-PARTS-RULE [3] deals with vertical intervals between
two voices.
In the input [a] you define a part and in [b] another one Then in [c] you set which
intervals are NOT allowed between the voices defined in [a] and [b].

3.3 02-Harmonic-Rules 123

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ

œ œ

œ

q = 60

5

4 œ œ

œ œ

œ
4

4

œ
œ

œ

œ

P1

&

4

4 œ
œ

œ
œ

q = 60

5

4
œ

œ œ
œ œ

4

4
œ œ œ

œ

P1

?

4

4

œ
œ œ

œ

q = 60

5

4

œ œ œ

œ œ

4

4

œ

œ

œ
œ

P1

?

4

4
œ

œ œ

œ

q = 60

5

4 œ œ

œ
œ

œ

4

4

œ
œ œ

œ
P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

more-rules

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((66_80) (56_72) (48_66) (36_60))

(E)

a--->

(E)

a--->

(E)

a--->

(E)

<---b

(E)

<---b

(E)

<---b

(E)

c--->

(E)

c--->

(E)

c--->

s-pmc-not-intv-between-2-parts-rule

S-pmc

1 2

(3 4) true/false

1

s-pmc-not-intv-between-2-parts-rule

S-pmc

2 3

(3 4) true/false

1

s-pmc-not-intv-between-2-parts-rule

S-pmc

3 4

(3 4) true/false

1

Figure 113: 2-02-13-not-allowed-interval-between-2-parts

3.3.14 14-To-Be-Done

2.02.14

3.3 02-Harmonic-Rules 124

allowed-int-between-a-part-and-others

TO BE DONE

not-allowed-int-between-a-part-and-others

TO BE DONE

Figure 114: 2-02-14-to-be-done

3.3.15 15-Smaller-and-Bigger-Int-between-Parts

2.02.15 - SMALLER-AND-BIGGER-INT-BETWEEN-PARTS
S-PMC-SMALLER-INT-BETWEEN-2-PARTS-RULE [3] deals with vertical intervals be-
tween two parts, defined in [a] and [b] inputs.
The solution is forced to include harmonic intervals smaller than the given interval value
[c].
S-PMC-BIGGER-INT-BETWEEN-2-PARTS-RULE [4] does the opposite, so the solution
is forced to included harmonic intervals bigger than a given interval [c] between two
voices.

3.3 02-Harmonic-Rules 125

s-pmc-smaller-int-between-2-parts-rule

S-pmc

1 2

6 true/false

1

s-pmc-bigger-int-between-2-parts-rule

S-pmc

1 2

6 true/false

1

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
œ œ œ œ

q = 60

5

4

œ œ œ œ
œ 4

4

œ œ

œ
œP1

&

4

4 œ
œ œ œ

q = 60

5

4 œ œ œ œ
œ 4

4
œ œ

œ
œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((60_74) (60_72))

(E)

a--->

(E)

a--->

(E)

<---b

(E)

<---b

(E)

c--->

(E)

c--->

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

44

Figure 115: 2-02-15-smaller-and-bigger-int-between-parts

3.3.16 16-Forbidden-Interval-Relation

2.02.16 - S-PMC-FORBIDDEN-INT-RELATION-BETWEEN-2-PARTS-RULE
This rule is not so easy to understand. It is a generalisation of the ancient ’false relation’.
This rule does not admit, in a close succession in two independent parts, that two dif-
ferent pitches can be swapped between the two parts. For instance, let take the pitches
C and D and just two voices. The S-PMC-FORBIDDEN-INT-RELATION-BETWEEN-2-
PARTS-RULE [3] does not admit that, if D follows C in the first voice, and in the second
voice D is the second note, C can not be before D in the second voice.
In [2] you define the search space.
In [a] you set the first voice, and in [b] the second one. In [c] you have to specify which
of the intervals between the two voices forbids the succession of pitches.
In [1] you chose which Score-Editor you want to use. BE CAREFUL: the first Score-
Editor [d], as I constrained the first two pitches in the two voices, does not have so-
lutions. That is because I am asking not to have two consecutive pitches producing a
major second (set in [c]), swapped between the two voices. If in [1] you chose [e], you
will get several possible solutions.
With S-PMC-ALLOWED-PITCHES-RULE [4] I am asking only C major scale notes.

3.3 02-Harmonic-Rules 126

(Please look at the tutorial n. 2.01.3.1 of this same tutorial library).
With the S-PMC-NO-CROSSING-VOICE-RULE [5] I am looking for solutions in which
the first voice has higher notes than the second voice. (Please look at the tutorial n.
2.03.01 of this same tutorial library).

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ œ

œ

œ

q = 60

P1

&

4

4

œ œ œ
œ

q = 60

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

()

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((60_74) (60_72))

(E)

a--->

(E)

<---b

(E)

c--->

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

s-pmc-forbidden-int-relation-between-2-parts-rule

S-pmc

1 2

2 true/false

1

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

P1

&

4

4
œ œ

œ

œ

q = 60

P1

¬

L

score pitches rtms/times

(E)

d--->

(E)

<---e

44

55

Figure 116: 2-02-16-forbidden-interval-relation

3.3.17 17-Not-N-Consecutive-Equal-Intervals

2.02.17 - S-PMC-NOT-N-CONSECUTIVE-HARM-INT-RULE
S-PMC-NO-CROSSING-VOICE-RULE [3] forbids two or more voices to cross each other’s
pitches. (See also the tutorial 2.03.01 - NO-CROSSING-VOICE-RULE).
S-PMC-NOT-N-CONSECUTIVE-HARM-INT-RULE [4] forbids two given voices, set in [a]
and [b], to have more than a given number [c] of consecutive equal harmonic intervals.

3.3 02-Harmonic-Rules 127

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4
œ

œ
œ

œ

q = 60

5

4
œ

œ
œ

œ
œ

4

4 œ
œ œ œP1

&

4

4 œ

œ

œ

œ

q = 60

5

4

œ
œ œ œ œ

4

4
œ

œ œ œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

()

more-rules

11

22
33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chord pitches

value-box

((60_72) (60_72))

44

(E)

a--->

(E)

<---b

(E)

c--->

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

s-pmc-not-n-consecutive-harm-int-rule

S-pmc

1 2

3 true/false

1

s-pmc-intv-between-2-parts-rule

S-pmc

1 2

(3 4 7 11) true/false

1

Figure 117: 2-02-17-not-n-consecutive-equal-intervals

3.3.18 18-Not-N-Same-Directions

2.02.18 - S-PMC-NOT-N-SAME-DIRECTIONS-RULE
S-PMC-NOT-N-SAME-DIRECTIONS-RULE [3] forbids two given voices, set in [a] and
[b], to go more than a given number of times [c] in the same direction.

3.3 02-Harmonic-Rules 128

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4 œ œ œ œ

q = 60

5

4
œ œ œ œ œ

4

4
œ œ œ œP1

&

4

4

œ œ œ œ

q = 60

5

4 œ
œ œ

œ
œ

4

4 œ œ œ
œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

more-rules

more-rules

11

22

33

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

Chord-Editor

E

&

?

˙˙
˙˙
˙˙
˙

chordpitches

value-box

((60_72) (60_72))

(E)

a--->

(E)

<---b

(E)

c--->

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

s-pmc-intv-between-2-parts-rule

S-pmc

1 2

(3 4 5 7) true/false

1

s-pmc-not-n-same-directions-rule

S-pmc

1 2

5 true/false

1

Figure 118: 2-02-18-not-n-same-directions

3.4 03-Voice-Leading-Rules 129

3.3.19 BPF-Delay

2D-constructor

:bpf

xs/l

value-box

(0 1 2 3 7 6 5 4 2 3 5 10 12 9 8 7 6 5 4 3 2)
length

arg1

list

argument

args

arithm-ser-stop

jbs-cmi

31 1

stop
g+

l1? 8

reverse

sequence

arithm-ser-stop

jbs-cmi

1 1

stop

list

argument

args

list

argument

args

2D-Editor

E1/2 objects active

g-scaling

vals?

1

51

g-round

l1?

Figure 119: Bpf-Delay

3.4 03-Voice-Leading-Rules

3.4.1 01-No-Crossing-Voice-Rule

2.03.01 - S-PMC-NO-CROSSING-VOICE-RULE
S-PMC-NO-CROSSING-VOICE-RULE [3] does not allow : - the first voice to have lower
notes than the second voice, - the second voice to have lower notes than the third voice,
- the third voice to have lower notes than the fourth, and so on...
ATTENTION In this example there are only four voices, but THERE IS NO LIMITATION
in terms of number of voices.

3.4 03-Voice-Leading-Rules 130

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

nil

more-rules

()

11

22

33
s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

Score-Editor

E

&

1

4

4

œ# œn œ#
œ#

q = 60

5

4 œ#

œ
œ œ œ 4

4

œ
œ

œ

œP1

&

4

4 œ#
œ œ œ

q = 60

5

4 œ

œ
œ œ œ#

4

4

œ#
œ

œ#
œ

P1

?

4

4 œ#

œ œ œ#

q = 60

5

4

œ œ
œ œ#

œ
4

4

œ#

œ#

œ

œ

P1

?

4

4

œ#

œ

œ# œ

q = 60

5

4
œ

œ#

œ
œ#

œ

4

4
œ#

œ œ

œP1

¬

L

score pitches rtms/times

value-box

((66_80) (56_72) (48_66) (36_60))

Figure 120: 2-03-01-no-crossing-voice-rule

3.4.2 02-No-Open-Parallel-Rule

2.03.02 - S-PMC-NO-OPEN-PARALLEL-RULE
S-PMC-NO-OPEN-PARALLEL-RULE [5] forbids two voices to have two consecutive oc-
taves (0 as an interval of unison [a]) and any consecutive fifths (7 as an interval of fifth
[a]).

3.4 03-Voice-Leading-Rules 131

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

r1

more-rules

more-rules

11

22 s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

Score-Editor

E

&

1

4

4
œ

œ
œ

œ

q = 60

5

4
œ

œ
œ œ

œ 4

4 œ

œ œ œ

P1

&

4

4

œ

œ

œ

œ

q = 60

5

4
œ

œ œ œ

œ

4

4
œ

œ

œ

œP1

?

4

4
œ

œ

œ

œ

q = 60

5

4

œ

œ œ œ

œ 4

4 œ

œ

œ

œ

P1

?

4

4 œ

œ

œ

œ

q = 60

5

4
œ

œ

œ

œ

œ

4

4
œ

œ
œ

œP1

¬

L

score pitches rtms/times

value-box

((66_80) (56_72) (48_66) (36_60))

s-pmc-no-open-parallel-rule

S-pmc

(0 7) true/false

1

Chord-Editor

E

&

?

w
w

w

chord pitches

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

(E)

a--->

33

Figure 121: 2-03-02-no-open-parallel-rule

3.4.3 03-Forbidden-Succession-Rule

2.03.03 - S-PMC-FORBIDDEN-SUCCESSION-RULE
The S-PMC-FORBIDDEN-SUCCESSION-RULE [3] forbids to have a given succession of
intervals between two voices.
In this case we define in [a] an augmented fourth (6 semitones) and in [b] a perfect fifth
(7 semitones). The rule forbids any solution to have, between two voices, an interval of
augmented fourth followed by a perfect fifth.

3.4 03-Voice-Leading-Rules 132

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

r1

more-rules

more-rules

11

22

33

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

Score-Editor

E

&

1

4

4

œ œ œ œ

q = 60

5

4 œ
œ œ

œ œ 4

4

œ œ
œ

œP1

&

4

4
œ œ

œ œ

q = 60

5

4
œ œ

œ

œ
œ

4

4 œ œ

œ
œP1

?

4

4
œ

œ
œ

œ

q = 60

5

4

œ

œ œ

œ

œ

4

4

œ
œ œ

œ

P1

?

4

4

œ

œ
œ

œ

q = 60

5

4
œ œ

œ
œ

œ
4

4

œ
œ

œ
œP1

¬

L

score pitches rtms/times

value-box

((66_80) (56_72) (48_66) (36_60))

Chord-Editor

E

&

?

w w w w w w

chord pitches

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

(E)

a--->

s-pmc-forbidden-succession-rule

S-pmc

6 7

heuristic 1
(E)

<---b

Figure 122: 2-03-03-forbidden-succession-rule

3.4.4 04-Hidden-Parallel-Rule

2.03.04 - S-PMC-HIDDEN-PARALLEL-RULE
S-PMC-HIDDEN-PARALLEL-RULE [3] needs to set in [a] which are the intervals to focus
on, in this case the octave (set with 0 as a unison interval) and the perfect fifth (set with
7).
This rule only permits to get a fifth or an octave when the upper voice (between any
two voices) is moving stepwise.

3.5 04-Create-Expressions-Tools 133

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

collect-rules

r1

more-rules

more-rules

11

22

33

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

Score-Editor

E

&

1

4

4

œ œ œ
œ

q = 60

P1

&

4

4
œ

œ œ œ

q = 60

P1

?

4

4

œ œ

œ

œ

q = 60

P1

?

4

4 œ

œ
œ œ

q = 60

P1

¬

L

score pitches rtms/times

value-box

((66_80) (56_72) (48_66) (36_60))

Chord-Editor

E

&

?

w w w w w w w

chord pitches

s-pmc-allowed-pitch-rule

S-pmc

pitch :all

true/false 1

(E)

a--->

s-pmc-hidden-parallel-rule

S-pmc

(0 7) true/false

1

Figure 123: 2-03-04-hidden-parallel-rule

3.5 04-Create-Expressions-Tools

3.5.1 01-Create-Individual-Expression

2.04.01 - CREATE-INDIVIDUAL-EXPRESSION
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-INDIVIDUAL-EXPRESSION [3] works like this : In [a] you define on which
note you want to assign the expression. In [b] you define which expression. In [c] you
define in which voice you want to set the expressions : 1 is for the first voice, 2 for the
second and so on.
ATTENTION Indexes are written in constraints numeration, they are not like the Lisp
nth notation. So, do not forget that 1 is the first note, 2 for the second, 3 for the third
and so on. To know which are the expressions, please look at the ENP tutorial.

3.5 04-Create-Expressions-Tools 134

Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only to the notes having a :Conductor-Mark expression.
On these notes, the only pitch allowed is the C modulo 12 [d].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ
œ# œ#

œ

q = 60

5

4

œ# œ# œn

œ#

œ 4

4 œ#

œ

œ#
œP1

?

4

4

œ
œ#

œ
œ

q = 60

5

4 œ œ œ#

œ

œ
4

4 œ

œ œ

œ#P1

¬

L

score pitches rtms/times

collect-rules

r1

11

22

33

44

55

(E)

a --->

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:Conductor-Mark

(E)

d --->

66

create-individual-expression

S-pmc

(1 4 7 11) :Conductor-Mark

1

enp-script

A

score

rules

()

collect-script-rules

r1

more-rules

(E)

<---b

(E)

c --->

(E)

a --->

create-individual-expression

S-pmc

(3 6 9 10) :Conductor-Mark

2 (E)

<---b

(E)

c --->

Select the enp-script
and type R to reset.

77

Figure 124: 2-04-01-create-individual-expression

3.5.2 02-Create-Group-Expression

2.04.02 - CREATE-GROUP-EXPRESSIONS
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-GROUP-EXPRESSION [3] works like this : In [a] you define on which group of
notes you want the assign the expression.. In [b] you define which expression. In [c]
you define in which voice you want to set the expressions : 1 is for the first voice, 2 for
the second and so on.
ATTENTION Indexes are written in constraints numeration, they are not like the Lisp

3.5 04-Create-Expressions-Tools 135

nth notation. If you put (1 7), that means that from the first note to the seventh note
you want to apply an expression. In this example the expression is a :slur. To know
which are the expressions, please look at the ENP tutorial.
Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only on the notes having the :slur expression. On these
notes, the only pitch allowed is the C modulo 12 [d].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ

œ

œ

œ

q = 60

5

4
œ œ œ

œ œ

4

4
œ

œ

œ

œ

P1

?

4

4
œ# œ

œ

œ

q = 60

5

4 œ

œ#
œ

œ œ
4

4

œ# œn œ#
œ

P1

¬

L

score pitches rtms/times

collect-rules

r1

11

22

33

44

55

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:slur

(E)

d --->

66

enp-script

A

score

rules

()

collect-script-rules

r1

more-rules

(E)

<---b

(E)

c --->

(E)

a --->

(E)

c --->

77

create-group-expression

S-pmc

((1 7) (11 13)) :slur

1

create-group-expression

S-pmc

((3 5) (7 9)) :slur

2 (E)

<---b

Select the enp-script
and type R to reset.

(E)

a --->

Figure 125: 2-04-02-create-group-expression

3.5.3 03-Create-Face-Value-Expression

2.04.03 - CREATE-FACE-VALUE-EXPRESSION
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-GROUP-EXPRESSION [3] works like this : In [a] you define on which rhythmic
values you want to assign the expression. In [b] you define which expression. In [c]

3.5 04-Create-Expressions-Tools 136

you define in which voice you want to set the expressions : 1 is for the first voice, 2 for
the second and so on.
In this example the expression is a :slur. To know which are the expressions, please look
at the ENP tutorial.
Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only to the notes having an :accent expression. On these
notes, the only pitch allowed is the C modulo 12 [d].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ

>

œ

> œ#
˙
>

q = 60

5

4
œ

œ

œ œ

œ

>

œ

>

4

4
œ
>

œ
>

œ#

œ

œ#

P1

?

4

4 œ

>

œ
>

œ
>

œ

>

q = 60

5

4

œ

œ œ
œ#

œ#
œ

œ
œ

œ

>

4

4 œ

œ
>

œ
>

œ

>

P1

¬

L

score pitches rtms/times

collect-rules

r1

11

44

55s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:accent
(E)

d --->

66

enp-script

A

score

rules

()

collect-script-rules

r1

more-rules

77

create-face-value-expression

S-pmc

(1/8 1/2) :accent

1

create-face-value-expression

S-pmc

(1/4) :accent

2

value-box

((60_72) (48_60))

22

(E)

a --->

(E)

c --->

(E)

a --->

(E)

c --->

(E)

<---b

(E)

<---b

33

Select the enp-script
and type R to reset.

Figure 126: 2-04-03-create-face-value-expression

3.5.4 04-Create-Expression-on-Note-Sequence

2.04.04 - CREATE-EXPRESSION-ON-NOTE-SEQUENCE
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-EXPRESSION-ON-NOTE-SEQUENCE [3] works like this : In [a] you define

3.5 04-Create-Expressions-Tools 137

which expression (a :slur in the example) you want to assign. In [b] you define in
which voice you want to set the expressions. In this case ’:all’ means that the expression
will be applied to all voices.
CREATE-EXPRESSION-ON-NOTE-SEQUENCE [3] will create a slur on all sequences of
single notes. When a chord appears, the slur is closed.
Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only to the notes having a :slur expression. On these notes,
the only pitch allowed is the C modulo 12 [c].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

value-box

((60_72) (48_60))

Score-Editor

E

&

1

4

4

œ œ

œ
˙˙˙

q = 60

5

4
œœ œ

œ

œœ#

œœ œ

œ 4

4

œ

œ

œ

œ œP1

?

4

4

œœ œœ œœ œœœ

q = 60

5

4

œ#œ
œ

œ œ

œ œ œ œ œ

4

4

œ œ

œ œP1

¬

L

score pitches rtms/times

collect-rules

r1

11

22

33

44

55
s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:slur

(E)

c --->

66

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

77

create-expression-on-note-sequence

S-pmc

:slur :all

(E)

a --->

Select the enp-script
and type R to reset.

Figure 127: 2-04-04-create-expression-on-note-sequence

3.5.5 05-Create-Expression-on-Chord-Sequence

2.04.05 - CREATE-EXPRESSION-ON-CHORD-SEQUENCE
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].

3.5 04-Create-Expressions-Tools 138

CREATE-EXPRESSION-ON-CHORD-SEQUENCE [3] works like this : In [a] you define
which expression (a :slur in the example) you want to assign. In [b] you define in which
voice you want to set the expressions. In this case ’:all’ means that the expression will
be applied to all voices.
CREATE-EXPRESSION-ON-CHORD-SEQUENCE [3] will create a slur on all sequences
of chords. When a single note appears, the slur is closed.
Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only to the notes having a :slur expression. On these notes,
the pitches allowed are C, E-flat and G, modulo 12 [c].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4

œ#

œ œ ˙
˙
˙#

q = 60

5

4
œ
œ

œ

œ

œ

œ

œ
œ œ# œ

4

4

œ#

œ# œ œ œ#P1

?

4

4

œ
œ

œ

œ# œœ

œ
œ
œ

q = 60

5

4

œ
œ#

œ

œ#

œ œ#
œ

œn
œn

œ
4

4

œ œ
œ œP1

¬

L

score pitches rtms/times

collect-rules

r1

more-rules

11

33

44

55

s-pmc-allowed-pitch-rule

S-pmc

(60 63 67) :all

true/false 1

:slur

(E)

c --->

66

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

77

create-expression-on-chord-sequence

S-pmc

:slur :all

value-box

((60_72) (48_60))

22

(E)

a --->

Select the enp-script
and type R to reset.

s-pmc-not-allowed-harm-int-rule

S-pmc

0 true/false

1

Figure 128: 2-04-05-create-expression-on-chord-sequence

3.5.6 06-Create-Expression-on-Grace-Note-Sequence

2.04.06 - CREATE-EXPRESSION-ON-GRACE-NOTE-SEQUENCE
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].
You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.

3.5 04-Create-Expressions-Tools 139

Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-EXPRESSION-ON-GRACE-NOTE-SEQUENCE [3] works like this : In [a] you
define which expression (a :slur in the example) you want to assign. In [b] you define in
which voice you want to set the expressions. In this case ’:all’ means that the expression
will be applied to all voices.
CREATE-EXPRESSION-ON-GRACE-NOTE-SEQUENCE [3] will create a slur on all se-
quences of grace notes.
Now, if you evaluate the Multi-Score-PMC [7] you will see that S-PMC-ALLOWED-
PITCH-RULE [6] is applied only to the notes having a :slur expression. On these notes,
the only pitch allowed is C, modulo 12 [c].

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4 œ
œ#

œ

˙
˙n

˙#

œ œ œ œ

q = 60

5

4 œ
œ#
œ

œ œ œ

œ#œ

œœ
œœn œn

œ#

P1

?

4

4

œ#œ œ#
œ#

œ
œ#

œ
œnœ

q = 60

5

4

œœ#

œ œ# œn

œ œ œ

œ œ œ

œ

œ#

œn

œnP1

¬

L

score pitches rtms/times

11

33

44

55

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

77

create-expression-on-grace-note-sequence

S-pmc

:slur :all

(E)

a --->

Select the enp-script
and type R to reset.

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:slur

(E)

c --->

66

value-box

((60_72) (48_60))

22

collect-rules

r1

more-rules

s-pmc-not-allowed-harm-int-rule

S-pmc

0 true/false

1

Figure 129: 2-04-06-create-expression-on-grace-note-sequence

3.5.7 07-Create-Expression-on-Main-Beat

2.04.07 - CREATE-EXPRESSION-ON-MAIN-BEAT
All the expression functions work with the ENP-SCRIPT box [4]. The goal is to apply a
given rule (in this example the S-PMC-ALLOWED-PITCH-RULE [6]), only where a given
expression can be found. So first of all type R after having selected the ENP-SCRIPT [4].

3.5 04-Create-Expressions-Tools 140

You will see that in the SCORE-EDITOR [1] all expression symbols will disappear.
Now evaluate the ENP-SCRIPT [4]. According to the boxes connected to the COLLECT-
SCRIPT-RULES [5] you will generate some expressions in the SCORE-EDITOR [1].
CREATE-EXPRESSION-ON-MAIN-BEAT [3] works like this : In [a] you define which
expression (a fermata in the example) you want to assign. In [b] you define in which
voice you want to set the expressions. In this case ’:all’ means that the expression will
be applied to all voices.
CREATE-EXPRESSION-ON-MAIN-BEAT [3] will create a fermata on all main beats of
each measure.

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4
4 œ

U

œ œ# ˙# ˙˙#
œ œ

œ
œ

q = 60

5
4 œ

U

œ œ œ# œ#
œœ# œœ#

œœ
œ œn

P1

?
4
4 œ

U œ
œ œ#œ

œ#

q = 60

5
4 œ

U

œ#
œœ

œ œ œn œ#
œ# œ œ

œ
œ œnP1

¬

L

score pitches rtms/times

11

33

44

55

(E)

a --->

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

77

create-expression-on-main-beat

S-pmc

:fermata :all

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:fermata

(E)

c --->

66

value-box

((60_72) (48_60))

22

collect-rules

r1 Select the enp-script
and type R to reset.

Figure 130: 2-04-07-create-expression-on-main-beat

3.5.8 08-Create-Expression-Not-on-Main-Beat

2.04.08 - CREATE-EXPRESSION-NOT-ON-MAIN-BEAT
CREATE-EXPRESSION-NOT-ON-MAIN-BEAT [3] works like this : In [a] you define
which expression (an accent in the example) you want to assign. In [b] you define
in which voice you want to set the expressions. In this case :all means that the expres-
sion will be applied to all voices.

3.5 04-Create-Expressions-Tools 141

CREATE-EXPRESSION-NOT-ON-MAIN-BEAT [3] will create a accent on every notes, ex-
cept on main beats, of each measure.

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4 œ#
œ

>
œ

>

˙

>

˙

>

˙

>

œ

>

œ

>

œ

>

œ

>

q = 60

5

4 œ

œ

>

œ

>

œ

>

œ

>

œ
>

œ
>

œ

>
œ

>

œ

>
œ

>

œ

>
œ

>

P1

?

4

4

œ
œ
>

œ
>

œ
>

œ
>

œ

>

q = 60

5

4
œ

œ
>

œ
>
œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

œ
>

P1

¬

L

score pitches rtms/times

11

33

44

55

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

create-expression-not-on-main-beat

S-pmc

:accent :all

(E)

a --->

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:accent

value-box

((60_72) (48_60))

22

collect-rules

r1 Select the enp-script
and type R to reset.

Figure 131: 2-04-08-create-expression-not-on-main-beat

3.5.9 09-Create-Expression-for-Beats

2.04.09 - CREATE-EXPRESSION-FOR-BEATS
CREATE-EXPRESSION-FOR-BEATS [3] works like this : In [a] you define on which
beats, the second and the fifth in the example, of each measure you want to apply an
expression. In [b] you define which expression, here a :fermata, you want to assign. In
[c] you define in which voice you want to set the expressions. In this case, 2 means that
the expression will be applied only to the second voice.
CREATE-EXPRESSION-FOR-BEATS [3] will create a fermata on all the second beats of
each measure, and on the fifth of the last measure, as it is a (5 4) measure.

3.5 04-Create-Expressions-Tools 142

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4
4

œ# œn œ
˙˙

q = 60

5
4 œ œ œ#

œ#
œœn œ

œP1

?
4
4 œ# œn

U

œ# œ
œ#

q = 60

5
4

œ
œ

œU œ œ#
œU

P1

¬

L

score pitches rtms/times

11

33

44

55

enp-script

A

score

rules

()

collect-script-rules

r1

()

(E)

<---b

create-expression-for-beats

S-pmc

(2 5) :fermata

2

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:fermata

collect-rules

r1

value-box

((60_72) (48_60))

22

(E)

a --->

Select the enp-script
and type R to reset.

(E)

c --->

Figure 132: 2-04-09-create-expression-for-beats

3.5.10 10-Create-Expression-for-Measures

2.04.10 - CREATE-EXPRESSION-FOR-MEASURES
CREATE-EXPRESSION-FOR-MEASURES [3] works like this : In [a] you define on which
measure, here the second, you want to apply an expression. In [b] you define which
expression, here an :accent, you want to assign. In [c] you define in which voice you
want to set the expressions. In this case 1 means that the expression will be applied
only to the first voice.
CREATE-EXPRESSION-FOR-MEASURES [3] will create a series of accents on the second
measure.

4. 0-UTILS 143

Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

T 1 () ()

Score-Editor

E

&

1

4

4 œ# œ
œ

˙# ˙n

q = 60

5

4
œ
>

œ

>

œ
>

œ
>

œ

>
œ

>

œ

>
œ

>

P1

?

4

4

œ# œ# œœn
œ

q = 60

5

4

œ# œ œ

œ# œ œP1

¬

L

score pitches rtms/times

11

33

(E)

<---b

create-expression-for-measures

S-pmc

(2) :accent

1

s-pmc-allowed-pitch-rule

S-pmc

(60) :all

true/false 1

:accent

collect-rules

r1

value-box

((60_72) (48_60))

22

(E)

a --->

44

55

enp-script

A

score

rules

()

collect-script-rules

r1

()

Select the enp-script
and type R to reset.

(E)

c --->

Figure 133: 2-04-10-create-expression-for-measures

4 0-Utils

4.1 Utils

This menu is dedicated to some functions useful to prepare datas for the Multi-PMC and
the Multi-Score-PMC.

4.2 01-Collect-Rules

3.01 - COLLECT-RULES
This function [1] collects the rules and separate true/false from heuristic rules. Use
the two outputs in order to connect to the Multi-PMC and the Multi-Score-PMC. The
COLLECT-RULES [1] sends automatically a true/false rule or a heuristic one in the
correct inputs.
The order in which you enter the rules in the COLLECT-RULES is not important. If
some inputs of the COLLECT-RULES are empty, it does not affect the Multi-PMC and the
Multi-Score-PMC.

4.3 02-Collect-Script-Rules 144

collect-rules

r1

()

()

()

more-rules

()

()

()

()

()

Multi-PMC

(4* ((0_3)))

rules () heur-rules

Multi-Score-PMC

1

in-score ()

(60_72)

rules heur-rules

collect-rules

nil

()

more-rules

()

()

more-rules

()

()

()

()

Score-Editor

E

&
1

44 œ œ œ œ

q = 60

P1

score pitches rtms/times

no-repetition-rule

pmc

true/false 0

no-local-repetition-rule

pmc

true/false 0

s-pmc-no-lcl-repetition-rule

S-pmc

:all true/false

1

s-pmc-allowed-pitch-rule

S-pmc

(60 62 64) :all

true/false 11

1

Figure 134: 3-01-collect-rules

4.3 02-Collect-Script-Rules

3.02 - COLLECT-SCRIPT-RULES
This function [1] collects the rules for the ENP-SCRIPT.
The order in which you enter the rules in the COLLECT-SCRIPT-RULES is not important.
If some inputs of the COLLECT-SCRIPT-RULES are empty, it does not affect the ENP-
SCRIPT.

4.4 03-Make-?1-and-Make-I1 145

Score-Editor

E

&

1

4
4

œ

F

œ
œ. œ

F

. œ œ œ œ œ

q = 60

P1

score pitches rtms/times

1
collect-script-rules

nil

more-rules

()

()

()

more-rules

()

more-rules

enp-script

A

score

rules

()

create-individual-expression

S-pmc

(1 4) :mf

:all

create-face-value-expression

S-pmc

(1/8) :staccato

:all create-group-expression

S-pmc

((1 3)) :crescendo

:all

Figure 135: 3-02-collect-script-rules

4.4 03-Make-?1-and-Make-I1

3.03 - MAKE-?1-AND-MAKE-I1
[1] creates a list of constraints candidates like ?1 ?2 ?3, etc.
[2] creates a list of constraints candidates, like from ?1 to ?8.
[3] creates a list of constraints indexes, like i1 i2 i3, according with the list of number
you put in ’list’.
[4] creates a list of constraints indexes, like from i1 to i10.

4.5 04-Make-Candidates 146

make-?1

(1 2 3)

make-?1-from-to

1 8

make-i1

(1 2 3)

make-i1-from-to

1 10

1 2 3 4

Figure 136: 3-03-make-?1-and-make-i1

4.5 04-Make-Candidates

3.04 - MK-CANDIDATES
MK-LINEAR-CANDIDATES [1] creates a sequence, for each element in ’list’, going both
up and down for a number of time set in ’step’.
MK-RANGE-CANDIDATES [2] creates a sequence, for each elements in ’list’, going up
and down for a number of time set in ’step’ and with a given ’range’.

4.6 05-Mk-Chain-Candidates 147

1

2

Chord-Editor

E1/3

&
? w w w w w w w# w# w#

chord pitches

mk-range-candidates

(60 62 64) 5

5

mk-linear-candidates

(60 62 64) 5

mk-linear-candidates

(60 62 64) 5

Chord-Editor

E1/3

&
? w# w w# w w w# w w# w

chord pitches

Figure 137: 3-04-make-candidates

4.6 05-Mk-Chain-Candidates

3.05 - MK-CHAIN-CANDIDATES
This function comes from Mikael Laurson’s code. It creates a list of candidates that
share a high level of common elements.
In ’list’ you put the range of candidates, and in ’groups’ you define how many sub-groups
you want to create.

4.7 06-Make-Pitch-Candidates 148

mk-chain-candidates

list 6

arithm-ser

50

1

90 Chord-Editor

E1/13

&
?

w w# w w w#

chord pitches

1

Figure 138: 3-05-mk-chain-candidates

4.7 06-Make-Pitch-Candidates

3.06 - MK-PITCH-CANDIDATES
MK-PITCH-CANDIDATES [1] creates a list of from the pitches entered in ’pitch’ for a
number of octaves indicated in ’octave’. If you put 1 you will obtain one octave lower
and upper of the original one.
MK-PITCH-CANDIDATES-NOT-SYMMETRIC [2] creates a list of pitch candidates. In
’pitch’ you put the note you want to be repeated. In ’up’ and ’down’ you define how
many octaves you want the pitch to be transposed up and down, independantely.

4.8 07-Logic-or-Condition 149

1
mk-pitch-candidates

pitch 1

Chord-Editor

E

&
?

˙˙˙˙

chord pitches

Chord-Editor

E

&
? ˙˙˙˙˙

˙˙˙˙˙
˙˙

chord pitches

Chord-Editor

E

&
? ˙˙˙˙˙

˙˙˙˙˙
˙˙˙˙˙
˙

chord pitches

2
mk-pitch-candidates-not-symmetric

pitch 1

2

Figure 139: 3-06-make-pitch-candidates

4.8 07-Logic-or-Condition

3.07 - LOGIC-OR-CONDITION
LOGIC-OR-CONDITION [1] is a function that has to be used with some precautions,
because you can easily not understand what is happening in the Multi-PMC.
This function adds the OR conditional to a series of rules. In this case I am looking for
a solution that can have OR the FIND-APPLY-GLOBAL-SUM-RULE set in [2] OR the one
set in [3].
Please evaluate the APPLY box [4] and you will see that the result can be randomly one
of the two structures set in [2] and [3].

4.9 08-Pitch-Extract-from-Score-Editor 150

logic-or-condition

S-pmc

arg1

rules

Multi-PMC

search-space

rules () ()

T 1 ()

pwgl-repeat

5 patch

collect-rules

r1

first

list

1

2

3

4

find-apply-global-sum-rule

pmc

10 true/false

0

arithm-ser

1

1

6

find-apply-global-sum-rule

pmc

12 true/false

0

apply

+

arg

Figure 140: 3-07-logic-or-condition

4.9 08-Pitch-Extract-from-Score-Editor

3.08 - PITCH-EXTRACT-FROM-SCORE-EDITOR
PITCH-EXTRACT-FROM-SCORE-EDITOR [1] function extracts pitches from a SCORE-
EDITOR in the chord format. It means that the output for a single note will be like this
(60) and for a chord like this (60 62 69).
Look at the CHORD-EDITOR [2] in which all notes are entered in a flat format list.
Then look at the CHORD-EDITOR [3] in which the pitches coming out of the PITCH-
EXTRACT-FROM-SCORE-EDITOR keep their structure as single notes or chords.

5. 0-EXAMPLES 151

Score-Editor

E

&
1

44 œœœ# œ œn œ# œ#
3

œ# œ# œ œn œœœ
œnœ# œn œnœ œœ œœ œ#

q = 60

P1

score pitches rtms/times

pitch-extract-from-score-editor

complex-list

flat

l

Chord-Editor

E

&
?

˙̇ ˙# ˙˙n ˙# ˙# ˙# ˙# ˙˙n ˙# ˙# ˙˙n ˙# ˙n ˙n
˙ ˙˙˙̇ ˙#

chord pitches

Chord-Editor

E1/14

&
?

˙̇̇#

chord pitches

11

2 3

Figure 141: 3-08-pitch-extract-from-score-editor

5 0-Examples

5.1 01-Collect-Other-Rules

5.1.1 Collect-Other-Rules-01

— COLLECT-RULES-01 —
This patch gives you an example of how you can apply some rules written in the text
syntax of Mikael Laurson.
The PWGL-REPEAT [1] produces a list of 10 arithmetic series in order to create the
search space.
In the COLLECT-RULES [2] I just put a true/false rule and a heuristic one. The first
asks for no local repetitions. The second (ALLOWED-INTERVALS) looks heuristically
solutions having only the following interval list : (1 2 3 4 5 6 7).
In the TEXT-BOX [3] I wrote a rule using Mikael Laurson text syntax defining that if an
interval between two notes is equal to a minor second, the following two intervals have
to be two octaves (equal to 12). This rule is connected through an X-APPEND [4] with
the left output of the COLLECT-RULES. That means that the previous true/false rule

5.1 01-Collect-Other-Rules 152

(NO-LOCAL-REPETITION-RULE) will be added to the TEXT-BOX rule within the MULTI-
PMC. On the contrary the heuristic rule still works as much as possible, accordingly to
the true/false rules.
Please evaluate the CHORD-EDITOR [5] and see how the rules are applied.

collect-rules

r1

more-rules

()

x-append

l1?

l2?

11

22

Multi-PMC

search-space

rules () heur-rules

T 1 ()

first

list

pwgl-repeat

10 (48_72)

Chord-Editor

E

&
?

w w w w w w w w w w#

chord pitches

no-local-repetition-rule

pmc

true/false 1

allowed-intervals-rule

pmc

(1 2 3 4 5 6 7) :ABSOLUTE

heuristic 1

text-box

(E)

(* ?1 ?2 ?3 ?4
 (?IF (IF (= (ABS (- ?2 ?1)) 1)
 (and (= (abs (- ?3 ?2)) 12)
 (= (abs (- ?4 ?3)) 12)) t))
 "if-minor-second-than-2-consecutive-octaves")

(E)

a --->

(E)

b--->

33

44

55

Figure 142: Collect-other-rules-01

5.1.2 Collect-Other-Rules-02

— COLLECT-RULES-02 —
This patch gives you another example of how you can apply some rules written in the
text syntax of Mikael Laurson.
In this case I used the Multi-Score-PMC [5] to solve a polyphonic problem.
In the Score-Editor [1] I set a given score.
In the COLLECT-RULES [2] I just put one true/false rule and two heuristic ones. The
true/false S-PMC-NO-CROSSING-VOICE) does not allow : - the first voice to have lower
notes than the second voice, - the second voice to have lower notes than the third voice,
- the third voice to have lower notes than the fourth, and so on...
Then there are two heuristic rules : the first (S-PMC-ALLOWED-HARMONY-IN-GIVEN-
MEASURES-RULE) obliges the solution to follow the harmony of C-major, but only in

5.1 01-Collect-Other-Rules 153

the first measure. The second heuristic rule (S-PMC-INTERVAL-SMALLER-RULE) asks
for a solution including only intervals smaller than the value defined in the ’interval’
input (in this case an augmented fourth).
In the TEXT-BOX [3] I wrote a rule using Mikael Laurson text syntax. This rule concerns
only the second part. If a note is a C the following note has to be a C-sharp. This rule
is connected through an X-APPEND [4] with the left output of the COLLECT-RULES.
That means that the previous true/false rule will be added to the TEXT-BOX rule within
the MULTI-PMC. On the contrary the heuristic rules still work as much as possible,
accordingly to the true/false rules.
Please evaluate the Multi-Score-PMC [5] and see how the rules are applied.

Score-Editor

E

&

1

4

4 œ
œ œ œ

q = 60

œ
œ

œ
œP1

&

4

4
œ œ

œ
œ

q = 60

œ œ#
œ

œ
P1

?

4

4

œ œ
œ

œ

q = 60
œ

œ
œ œ

P1

?

4

4

œ
œ œ

œ

q = 60

œ#
œ

œn œ#

P1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)
(* ?1 ?2 :PARTS 2 (?IF
 (if (MEMBER (MOD (M ?1) 12) '(0))
 (MEMBER (MOD (M ?2) 12) '(1))
 t)) "if-second-voice-C-than-C-sharp")

11

22

33

44 55
Multi-Score-PMC

1

in-score ()

search-space

rules heur-rules

value-box

collect-rules

r1

more-rules

more-rules

x-append

l1?

l2?

s-pmc-allowed-harmony-in-given-measures-rule

S-pmc

(60 64 67) (1)

heuristic 1

s-pmc-no-crossing-voice-rule

S-pmc

true/false 1

s-pmc-interval-smaller-rule

S-pmc

6 :all

heuristic 1

Figure 143: Collect-other-rules-02

5.1.3 Collect-Other-Rules-03

— COLLECT-RULES-03 —
This patch gives you another example of how you can apply some rules written in the
text syntax of Mikael Luarson.
In this case I used the ENP-SCRIPT [5] to solve a score treatment.
In [1] I wrote a score.

5.1 01-Collect-Other-Rules 154

In the COLLECT-SCRIPT-RULES [2] I define one rule for the fourth voice (CREATE-
EXPRESSION-ON-MAIN-BEAT) that puts an accent on each main beat for each measure.
I define also that for the first part I want to put an, accent on each not main beat of each
measure (CREATE-EXPRESSION-NOT-ON-MAIN-BEAT).
In the TEXT-BOX [3] I defined four rules written in Laurson syntax. Here is the detail:
1. When it finds an interval bigger than a minor third, I ask for a slur; 2. When it
finds four different pitches (in any modulo 12) I ask for a fermata; 3. When there are
three consecutive descending notes, I ask for a diminuendo; 4. When there are three
consecutive descending notes and the first interval is smaller than a minor third, then I
ask for a group.
Please choose with the RULE-FILTER [a] which rule you want to apply. You can chose
all of them if you want. Then select the ENP-SCRIPT [5] : first type R on the keyboard
in order to reset the Score-Editor, then type V on the keyboard and look at the result. If
you change the selection of rules inside the RULE-FILTER [a], to better see the result,
please select again the ENP-SCRIPT [5] : first type R to reset and then V and look at the
result.

enp-script

A

score

rules

()

Score-Editor

E

&

1

4

4
œ

œ
œ#

œ

q = 60

7

4
œ

œ œ#
œ

œ œ

œ#

4

4
œ œ

œ#
œ

œ

œ
œ#

œ

P1

&

4

4 œ œ
œ#

œ

q = 60

7

4 œ
œ

œ# œ
œ

œ
œ#

4

4 œ œ

œ# œ œ œ
œ#

œP1

&

4

4
œ œ

œ# œ

q = 60

7

4 œ œ
œ# œn œ

œ
œ#

4

4
œ

œ

œ#
œ

œ œ
œ#

œP1

&

4

4 œ
œ

œ# œ

q = 60

7

4 œ œ œ#
œ

œ œ

œ#

4

4

œ
œ œ#

œ œ

œ œ#
œ

P1

¬

L

score pitches rtms/times

text-box

(E)

(in-package :ccl)

(* ?1 ?2 (?if (when (> (abs (- (m ?2) (m ?1))) 3)
 (add-expression 'slur ?1 ?2))) "if-minor-third-than-slur")

(* ?1 :HARMONY (?IF
 (LET ((HARM (REMOVE-DUPLICATES (G-MOD (M ?1 :COMPLETE? T) 12))))
 (when (= (LENGTH HARM) 4) (add-expression 'fermata ?1)))) "if-complete-harmony-than-fermata")

(* ?1 ?2 ?3 (?if (when (< (m ?3) (m ?2) (m ?1))
 (add-expression 'diminuendo ?1 ?2 ?3))) "if-three-descending-notes-than-crescendo")

(* ?1 ?2 ?3 (?if (when (and (< (m ?3) (m ?2) (m ?1))
 (< (abs (- (m ?2) (m ?1))) 3))
 (add-expression 'group ?1 ?2 ?3))) "if-three-descending-notes-and-first-interval-littlethan-slur")

rule-filter

4

rules

collect-script-rules

r1

more-rules

create-expression-on-main-beat

S-pmc

:accent 4

x-append

l1?

l2?

create-expression-not-on-main-beat

S-pmc

:accent 1

(E)

<---a

11

22

33
44

55

Figure 144: Collect-other-rules-03

5.2 02-Contrepoint 155

5.2 02-Contrepoint

5.2.1 Counterpoint

This series of patches is conceived as part of the tutorial for the Multi-Score-PMC.
This exercise (which is not at all a goal in itself) tries to reproduce the Palestrina coun-
terpoint of first specie. That means a four voices counterpoint in which all the notes
have the same face value (1/4).
The conception of these patches is absolutely consistent. Go from the first to the last in
the order. What is explained in one patch is not longer explained in the next ones.

5.2.2 Counterpoint-01

— COUNTERPOINT-01 —
In the SCORE-EDITOR [a] I entered four voices with random notes.
The search-space is in the VALUE-BOX [b] using the expand list code. Look at the
CHORD-EDITOR [c] how the candidates are distributed in order to generate only useful
notes.
The first (soprano voice) is the highest, the contralto voice is below till the bass voice
(the fourth), that is the lowest.
In the abstraction ’Rules’ [d], I will put the rules. For the moment it is empty.
Evaluate the Multi-Score-EDITOR [e] in order to see how it works with the random
mode set on T.

5.2 02-Contrepoint 156

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

((60_84) (56_72) (48_64) (36_60))

Score-Editor

E

&

1

4

4

œ œ

œ#
œ#

q = 60

œ

œ

œ# œ

P1

&

4

4
œ

œ

œ

œ

q = 60

œ#

œ#

œn

œ

P1

?

4

4 œ#

œ œ

œn

q = 60

œ# œn

œ#
œ#

P1

?

4

4 œ œ#

œ#

œ

q = 60

œ#

œ

œ œP1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Rules

A

Chord-Editor

E1/4

&

?

˙˙# ˙˙# ˙˙˙# ˙ ˙# ˙˙# ˙
˙˙# ˙ ˙# ˙˙ ˙# ˙ ˙# ˙ ˙# ˙˙

chord pitches

(E)

<--- a

(E)

<--- b

(E)

<--- c

(E)

<--- e

(E)

d --->

Figure 145: Counterpoint-01

5.2.3 Counterpoint-02

— COUNTERPOINT-02 —
This is the next step. In the abstraction ’Count-notes’ [a], I calculate how long is a
sequence of notes for each voice.
Open the abstraction ’Rules’ [b].
S-PMC-INDEX-RULE [1] and [2] obliges the first note (index 1) of the soprano voice [c]
to be equal to C (midi note 60)
In [2] the C (midi note 72) will be at the last place, defined by the abstraction ’Count-
notes’ result coming in the [d] input.

5.2 02-Contrepoint 157

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

((60_84) (56_72) (48_64) (36_60))

Score-Editor

E

&

1

4
4 œ

œ
œ

œ

q = 60

œ œ
œ

œUP1

&
4
4 œ

œ
œ œ

q = 60

œ œ œ œ

U
P1

?
4
4

œ
œ œ œ

q = 60

œ œ
œ

œUP1

?
4
4 œ

œ

œ

œ

q = 60

œ
œ

œ

œ

U
P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Rules

A

Count-notes

A(E)

a --->

(E)

b --->

Figure 146: Counterpoint-02

5.2.4 Counterpoint-03

— COUNTERPOINT-03 —
As I told you in the introduction, these patch are put in a consistent order, so I will
describe only the integrations and the differences from the previous patches.
Please open the ’Candenza-rules’ abstraction [a].
In addition of what we have seen before in [1], I obliged the bass voice (set in [b]) to
finish on a C in the last measure. At the same time, the rule [2] allows only, on the
fermata, the notes of a C-Major chord.

5.2 02-Contrepoint 158

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

((60_84) (56_72) (48_64) (36_60))

Cadenza-rules

A

Count-notes

A

Score-Editor

E

&

1

4
4 œ œ œ œ

q = 60
œ œ

œ
œUP1

&
4
4

œ œ
œ

œ

q = 60

œ

œ

œ
œ

U

P1

?
4
4

œ
œ œ œ

q = 60

œ œ
œ œU

P1

?
4
4

œ œ œ œ

q = 60

œ œ œ
œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

(E)

a --->

Figure 147: Counterpoint-03

5.2.5 Counterpoint-04

— COUNTERPOINT-04 —
Open the ’Interval-rules’ abstraction [a].
Here you can easily understand the rules I apply. In [1] I ask for intervals smaller than
a major sixth. In [2] I oblige the bass voice [b] not to have local repetitions. In [3] I
ask for a solution where, for every voices, I don’t want more than 5 notes going in the
same descending direction. In [4] I ask the same thing but for ascending notes.

5.2 02-Contrepoint 159

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

((60_84) (56_72) (48_64) (36_60))

Cadenza-rules

A

Count-notes

A

Interval-rules

A

x-append

l1?

l2?

Score-Editor

E

&

1

4
4 œ

œ
œ

œ

q = 60

œ
œ œ

œUP1

&
4
4

œ œ œ
œ

q = 60

œ œ
œ œ

U
P1

?
4
4 œ œ œ œ

q = 60

œ
œ œ

œ

U

P1

?
4
4 œ

œ œ
œ

q = 60

œ
œ œ

œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

(E)

a --->

Figure 148: Counterpoint-04

5.2.6 Counterpoint-05

— COUNTERPOINT-05 —
Open the ’Interval-rules’ [a] abstraction.
In [1] I ask for a solution that never reaches in 3 notes [b] an interval of major seventh
[c]. In [2] I apply the same rule but forbidding to reach, in 4 notes [d] an interval
of octave [e]. In [3] I use the JUMP-RESOLUTION RULE : when an interval of the
solution is bigger than an augmented fourth [f], the next interval has to be in the
opposite direction, and must be to be smaller than a minor third [g]. In [4] I forbid
local repetitions for all voices, for this reason the previous rule [5] is now inactive.

5.2 02-Contrepoint 160

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Score-Editor

E

&

1

4
4 œ

œ œ œ

q = 60

œ œ œ
œUP1

&
4
4 œ œ

œ œ

q = 60

œ
œ œ œ

U
P1

?
4
4

œ
œ œ œ

q = 60

œ
œ œ

œU

P1

?
4
4

œ œ œ œ

q = 60

œ œ
œ œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Cadenza-rules

A

Count-notes

A

Interval-rules

A

x-append

l1?

l2?

(E)

a --->

Figure 149: Counterpoint-05

5.2.7 Counterpoint-06

— COUNTERPOINT-06 —
Open the ’Harmonic-rules’ [a] abstraction.
In [1] I forbid the unison [b] as a possible interval between two voices. In [2] I ask for a
solution where, for each chord, I have at least three [c] different pitches. In [3] I define
that I prefer to duplicate octaves [d]. In [4] I give the Multi-Score-PMC all forbidden
inversions set in [e].

5.2 02-Contrepoint 161

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Cadenza-rules

A

Count-notes

A

Interval-rules

A

x-append

l1?

l2?

lst?

Harmonic-rules

A
(E)

a --->

Score-Editor

E

&

1

4
4 œ

œ
œ œ

q = 60

œ œ œ œUP1

&
4
4

œ
œ

œ œ

q = 60

œ œ œ œ

U

P1

?
4
4 œ œ

œ œ

q = 60

œ œ
œ œUP1

?
4
4 œ œ œ œ

q = 60

œ œ
œ œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Figure 150: Counterpoint-06

5.2.8 Counterpoint-07

— COUNTERPOINT-07 —
Open the ’Harmonic-II-rules’ [a] abstraction.
In [1] I define the allowed chord successions with input [b].
Open the ’Chord-successions’ [b] abstraction. Inside you’ll see how I define the succes-
sions. In [d] I give a chord and in [e] I put all possible following chords.
In [2] I give all the allowed chords set in the ’Allowed-chords’ [c] abstraction. Please
open it. In [f] I entered all the chord I do accept. Please if you do not understand this
patch, see the patch 2.02.09 of the same tutorial.

5.2 02-Contrepoint 162

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Cadenza-rules

A

Count-notes

A

Interval-rules

A

x-append

l1?

l2?

lst?

lst?

Harmonic-rules

A

Harmonic-II-rules

A(E)

a --->

Score-Editor

E

&

1

4
4 œ œ œ

œ

q = 60

œ œ œ œUP1

&
4
4 œ

œ œ œ

q = 60

œ œ œ œ

U

P1

?
4
4 œ œ œ

œ

q = 60

œ
œ œ œUP1

?
4
4 œ œ

œ œ

q = 60

œ
œ

œ œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Figure 151: Counterpoint-07

5.2.9 Counterpoint-08

— COUNTERPOINT-08 —
Open the ’Voice-leading’ [a] abstraction.
In [1] I ask not to have open parallel octaves and fifths [b]. In [2] I do not accept a
succession from an augmented fourth [c] to a perfect fifth [d]. In [3] I forbid hidden
parallel octaves and fifths [e].
Some little changes came since the last patch. Please open the abstraction ’Harmonic-
rules’ [f] and see that I added the rule NO-CROSSING-VOICE [4], to avoid any intersec-
tions between pitches of different parts.
Now open the ’Interval-rules’ abstraction [g]. Here I added TONE-RESOLUTION- RULE
[5], in which I specify that the sensible note (B in C-major mode [h]) has to be followed
by a C note [i].
Why do I add these rules now? Because I forgot to do it before. :-)

5.2 02-Contrepoint 163

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Cadenza-rules

A

Count-notes

A

Interval-rules

A x-append

l1?

l2?

lst?

lst?

lst?

Harmonic-rules

A

Voice-leading

A(E)

a--->

Harmonic-II-rules

A

(E)

f--->

(E)

g--->

Score-Editor

E

&

1

4
4 œ œ œ

œ

q = 60

œ œ œ œUP1

&
4
4 œ

œ œ œ

q = 60

œ œ œ œ

U
P1

?
4
4

œ œ œ œ

q = 60

œ œ œ œU
P1

?
4
4 œ

œ
œ œ

q = 60

œ œ
œ

œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Figure 152: Counterpoint-08

5.2.10 Counterpoint-09

— COUNTERPOINT-09 —
Open the ’Given-voice’ [a] abstraction.
Here you see that I give the bass voice. When you evaluate the Multi-Score-PMC, you’ll
see that the bass voice does not change, and the other voices follow all the rules.

5.2 02-Contrepoint 164

Given-voice

A

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Count-notes

A
Interval-rules

A x-append

l1?

l2?

lst?

lst?

lst?

lst?

Harmonic-rules

A

Voice-leading

A

Harmonic-II-rules

A

(E)

a --->

Score-Editor

E

&

1

4
4 œ œ œ œ

q = 60

œ œ œ œ œ œ œ œUP1

&
4
4 œ œ œ œ

q = 60

œ œ
œ

œ œ œ œ œ

U
P1

?
4
4 œ œ œ œ

q = 60

œ œ œ
œ œ œ œ œU

P1

?
4
4 œ

œ œ œ

q = 60

œ œ œ œ œ
œ

œ
œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Cadenza-rules

A

Figure 153: Counterpoint-09

5.2.11 Counterpoint-10

— COUNTERPOINT-10 —
Just a very last part. As you see I added some arbitrary slur in the SCORE-EDITOR.
Open the ’Interval-rules’ abstraction [a]. Now I define that when there is a slur [1], the
intervals have to be smaller or equal than a perfect fourth.

5.3 03-Special-Combinations 165

Given-voice

A

Multi-Score-PMC

1

in-score ()

search-space

rules ()

T 1 () ()

value-box

Score-Editor

E

&

1

4
4 œ œ œ œ

q = 60

œ œ œ œ œ œ
œ œUP1

&
4
4 œ

œ œ œ

q = 60

œ œ
œ

œ œ œ œ œ

U
P1

?
4
4

œ œ œ œ

q = 60

œ œ œ
œ œ œ œ œU

P1

?
4
4 œ

œ œ œ

q = 60

œ œ œ œ œ
œ

œ
œ

U

P1

¬

L

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

score pitches rtms/times

Cadenza-rules

A

Count-notes

A Interval-rules

A
x-append

l1?

l2?

lst?

lst?

lst?

lst?

Harmonic-rules

A

Voice-leading

A

Harmonic-II-rules

A

(E)

a --->

Figure 154: Counterpoint-10

5.3 03-Special-Combinations

5.3.1 Always-3-Given-Elements-01

— ALWAYS-3-GIVEN-ELEMENTS-01 —
The aim of this little series of patches is to show you how to use several Multi-PMCs in
order to generate solutions always including some given values.
This first patch is just a reminder of what you should have seen in the Multi-PMC rules
tutorials.
The three INDEX-RULES [1] force the solution to have, in a given place [a], the value
defined in [b]. So in this case the values 2, 7 and 5 will always be found in the solution
in the first, third, and fifth places.

5.3 03-Special-Combinations 166

Multi-PMC

search-space

rules () heur-rules

T 1 ()

collect-rules

r1

more-rules

more-rules

more-rules

first

list

pwgl-repeat

8 patch

value-box

(0_10)

no-repetition-rule

pmc

true/false 1

index-rule

pmc

i1 2

true/false 1

index-rule

pmc

i3 7

true/false 1

index-rule

pmc

i5 5

true/false 1

(E)

a --->

(E)

<--- b

11

Figure 155: Always-3-given-elements-01

5.3.2 Always-3-Given-Elements-02

— ALWAYS-3-GIVEN-ELEMENTS-02 —
This second patch is little bit tougher. Its goal is to generate a solution in which a set of
values, here (1 2 3) [a] will always be found in this order but with possible other values
between them.
In this patch we use two Multi-PMCs in order to create such a solution.
The first one [1] generates a solution from candidates belonging to an arithmetic series
with a length identical to the list we want to create [b] The length of the result, which
has no repetition allowed [c], comes itself from the length of the set of values we want
in the final solution [d].
This result is sorted, here in ascending order [e], and then goes to the first input of the
”’create-i?’ abstraction [2]. Please look inside.
Here the PWGL-MAP creates as much INDEX-RULES as there is values, coming from the
second input [f], in the desired set [a]. The MAKE-I1 function [g] creates random but
ordered indexes for the rules. Note that a COLLECT-RULES is needed here in order to
prevent parentheses problems further in the patch.

5.3 03-Special-Combinations 167

The X-APPEND [h] recovers the generated rules and adds another NO-REPETITION-
RULE [i], in order to avoid duplicates of the values we are interested in.
Please evaluate the second Multi-PMC [3] and see that the values 1, 2 and 3 can always
be found somewhere in the solution, each time in the same ascending order.

Multi-PMC

search-space

rules () ()

T 1 ()

collect-rules

r1

first

list

pwgl-repeat

count patch

value-box

(0_10)

no-repetition-rule

pmc

true/false1

Multi-PMC

search-space

rules () ()

T 1 ()

collect-rules

r1

first

no-repetition-rule

pmc

true/false 1

pwgl-repeat

count patch

sort-list

lst

<

create-i?

A

x-append

l1?

l2?

arithm-ser

1

1

end

value-box

8

11

value-box

(1 2 3)

length

(E)

<--- b

(E)

<--- a

(E)

<--- c

(E)

<--- d

(E)

<--- e

33

22

(E)

<--- h

(E)

<--- i

Figure 156: Always-3-given-elements-02

5.3.3 Always-3-Given-Elements-03

— ALWAYS-3-GIVEN-ELEMENTS-03 —
This third patch aims to create a solution in which a given set of values, here (1 2 3),
can always be found in this form. In other words, the generated list will always include
1, 2 and 3 in this order, and without any values between them.
Like in the previous tutorial, the left part of this patch prepares a series of indexes that
will be used to generate several INDEX-RULES in the ’create-i?’ abstraction [1].
The first thing done here is generating, with a NTH-RANDOM function [d], a random
value selected from an arithmetic series. This function takes its ’begin’ and ’end’ values
from both length of the desired set [a] and the final solution [b]. Please look further in
order to understand this little trick.
The same random value is then sent, thanks to the CONST-VALUE, to both a G- [e] and

5.3 03-Special-Combinations 168

the MAKE-I1-FROM-TO function [f]. This one uses the random value as the last value
of a list of [c] indexes.
The G- calculates the first value of the same list from the random value itself and the 1-
function [g] that prevents the first index of the list to be lower than i1.
The ’create-i?’ abstraction works pretty much like in the previous patch. The loop
generates a given number of INDEX-RULES according to the list of indexes and the
desired set of values.
The X-APPEND [h] recovers the generated INDEX-RULES and also a NO-REPETITION-
RULE, in order to avoid duplicates of the values we are interested with.
Please evaluate the second Multi-PMC [2] and see that the values 1, 2 and 3 can always
be found somewhere in the solution, each time stuck together and in the same order.

Multi-PMC

search-space

rules () ()

T 1 ()

collect-rules

r1

first

list

pwgl-repeat

count patch

value-box

(1_10)

no-repetition-rule

pmc

true/false 1

const-value

patch

:once

x-append

l1?

l2?

nth-random

list

create-i?

A

make-i1-from-to

from to

value-box

10

arithm-ser

begin

1

end

g-

l1? l2?

value-box

(1 2 3)

length

1-

(E)

<--- a

(E)

<--- b

(E)

<--- d

(E)

<--- c

22

(E)

e --->

(E)

f --->

11

(E)

<--- h
(E)

<--- g

Figure 157: Always-3-given-elements-03

A. BOX REFERENCE 169

A Box Reference

allowed-chain-rule

arglist: (element following mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges a given element, to be followed by those elements eneterd in following.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

allowed-distant-intervals-rule

arglist: (distance intervals absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule allows a sequence of intervals to be equals with a given distance. The allowed
intervals are put in INTERVALS. The distance has to be described giving the first and the
last note of the distance. For instance, if in distance you put 1 and 3 it means that in a
sequence each the interval between the first and the third note has to be a member of
INTERVALS. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

allowed-intervals-rule

arglist: (intervals absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule allows only the intervals indicated in ’intervals’. If the menu ’absolute?’ is
’absolute, that means that intervals are intented in absolute mode. If this menu is
’up/down’, that means that the intervals are divided into ascending and descending.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

allowed-pitch-class-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the class (for instance minor triad) indicated in ’pitch’ will be allowed in any
octave. ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode
heuristic, the rule does not work because of SLEN...

A. BOX REFERENCE 170

allowed-pitch-class-sub-list-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This function outputs a solution having only the class (for instance minor triad) indi-
cated in ’pitch’ will be allowed in any octave including also other notes. That means
that is I’m looking for a minor triad in a 5 notes chord, the solution will look if a minor
triad exists inside the 5 notes chord. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule does not work because of SLEN...

allowed-pitch-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the pitches indicated in ’pitch’ will be allowed in any octave. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied
as much as possible

allowed-pitch-structure-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the pitches indicated in ’pitch’ will be allowed in any octave. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule does not
work because of SLEN...

allowed-polarized-pitch-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the pitches indicated in ’pitch’ will be allowed in any octave. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied
as much as possible

alternating-+/-first-elmt-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule ceates a result of sub lists in which the fisrt element is, in an alterning way,
before positive then negative an so on. ATTENTION : this rule works with list of lists.

A. BOX REFERENCE 171

ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

alternating-+/-last-elmt-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule ceates a result of sub lists in which the last element is, in an alterning way,
before positive then negative an so on. ATTENTION : this rule works with list of lists.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

alternating-positive-negative-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule obliges positive number to be alternated with negative numbers. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

always-more-little-included-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
When one element (as list of lists) is bigger than a second so the more little has to
be included in the bigger. ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible

any-note-repeated-rule

arglist: (times which? mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Any notes has to be repeated (in modulo too) a less, exactly or more times as indicated
in ’times’. N.B. BE CAREFULL: the menu which? defines less, equal or more. If <, the
calculation is quite fast. If =, be sure to have a ’pari’ number of candidates in the esarch
space. If >, the calculation can be very slow. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 172

apply-interval-global-sum-rule

arglist: (sum mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule outputs a solution having the the sum of all intervals equal to the value put in
sum. First it makes the x->dx of all intervals and then it applies ’+ to all. ATTENTION
: in the mode true/false, does NOT work: because of SLEN

apply-interval-sum-rule

arglist: (sum mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule outputs a solution having the the sum of all intervals equal to the value put in
sum. First it makes the x->dx of all intervals and then it applies ’+ to all. ATTENTION
: in the mode true/false, does NOT work: because of SLEN

ascending-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges all the value to be ascending. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

ascending-sub-group-no-repet-rule

arglist: (nth-? mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges the nth (put in nth-?) values of a list of lists to be ascending without
any repetition. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

ascending-sub-group-with-repet-rule

arglist: (nth-? mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges the nth (put in nth-?) values of a list of lists to be ascending with
repetitions. ATTENTION : The Heuristic implementation can not work.

A. BOX REFERENCE 173

ascending-without-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges all the value to be ascending without any repetition. ATTENTION :
in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

chain-common-element-lists-rule

arglist: (chain-length? mode? weight)

package: JBS-CONSTRAINTS
menu: Structure-RulesIMatrix-Rules
This rule chains lists of lists following the criteria of adaptating figure: see CMI thoery.
You have two lists of lists: in chain-lenngth?, the length of the last part of the corrent
list (and automatically the length of the first part of the forword one. ATTENTION : IN
THE HEURISTIC MODE IT DOES NOT WORK. WHY???

chain-more-little-included-common-lists-rule

arglist: (first-n? last-n? mode? weight)

package: JBS-CONSTRAINTS
menu: Structure-RulesIMatrix-Rules
This rule chains lists of lists following the criteria of adaptating figure: see CMI thoery.
You have two lists of lists: in chain-lenngth?, the length of the last part of the corrent
list (and automatically the length of the first part of the forword one. ATTENTION : IN
THE HEURISTIC MODE IT DOES NOT WORK. WHY???

collect-rules

arglist: (r1 &rest more-rules)

package: JBS-CONSTRAINTS
menu: Utilities
Collect the rules and seperate true/false from heuristic rules. Use the two outputs in
order to connect to the pmc-engine

collect-script-rules

arglist: (r1 &rest more-rules)

package: JBS-CONSTRAINTS
menu: Utilities
Collect the rules for the enp-script. Use the two outputs in order to connect to the
pmc-engine

A. BOX REFERENCE 174

count-any-element-rule

arglist: (how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obligesa solution to have any element repeated many times as indicated in
’how-many. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

count-common-elements-rule

arglist: (how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges sub lists to have the number of common elements put in ’how-many.
ATTENTION : This rule works with a list of lists. ATTENTION : in the mode true/false,
the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

count-negative-intervals-rule

arglist: (number mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
The solution must have a number of negative intrevals as indicatd in number. ATTEN-
TION : in the mode true/false, the rule is perfectly applied. In the mode heuristic, the
rule DOES NOT WORK because of Slen...

count-negative-rule

arglist: (number mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
The solution must have a number of negative valure as indicatd in number. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

count-positive-intervals-rule

arglist: (number mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
The solution must have a number of positive intrevals as indicatd in number. ATTEN-
TION : in the mode true/false, the rule is perfectly applied. In the mode heuristic, the
rule DOES NOT WORK because of Slen...

A. BOX REFERENCE 175

count-positive-rule

arglist: (number mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
The solution must have a number of positive valure as indicatd in number. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

count-this-element-rule

arglist: (element how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obligesa solution to have any element repeated many times as indicated in
’how-many. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

count-this-modulo-rule

arglist: (note how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule obliges a solution to have a given note repeated many times as indicated in
’how-many, in any possible octave. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule is applied as much as possible

count-this-note-rule

arglist: (note how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule obliges a solution to have the given note repeated many times as indicated in
’how-many inthe exact octave. ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible

create-expression-for-beats

arglist: (beats-numbers expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression not on main beat for the beats set in beats-numbers in
any measure. In expression you pt the kind of expression you want. In parts if you put
:all, the rule will be applied on all parts. If you put 1 only in the first, second only in the
second...

A. BOX REFERENCE 176

create-expression-for-measures

arglist: (measure-numbers expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression for the entire measures set in measure-numbers. In ex-
pression you pt the kind of expression you want. In parts if you put :all, the rule will be
applied on all parts. If you put 1 only in the first, second only in the second...

create-expression-not-on-main-beat

arglist: (expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression not on main beat. In expression you pt the kind of ex-
pression you want. In parts if you put :all, the rule will be applied on all parts. If you
put 1 only in the first, second only in the second...

create-expression-on-chord-sequence

arglist: (expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression on consecutive chords. In expression you pt the kind of
expression you want. In parts if you put :all, the rule will be applied on all parts. If you
put 1 only in the first, second only in the second...

create-expression-on-grace-note-sequence

arglist: (expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression on consecutive grave-note sequence. In expression you
pt the kind of expression you want. In parts if you put :all, the rule will be applied on
all parts. If you put 1 only in the first, second only in the second...

create-expression-on-main-beat

arglist: (expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression on main beat value. In expression you pt the kind of
expression you want. In parts if you put :all, the rule will be applied on all parts. If you
put 1 only in the first, second only in the second...

A. BOX REFERENCE 177

create-expression-on-note-sequence

arglist: (expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
This function adds expression on consecutive single notes. In expression you pt the kind
of expression you want. In parts if you put :all, the rule will be applied on all parts. if
you put 1 only in the first, second only in the second...

create-face-value-expression

arglist: (face-values? expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
In face value you put the rhythmical values on whom you want to apply an expression.
In expression you put the kind of expression you want. In parts if you put :all, the rule
will be applied on all parts. If you put 1 only in the first, second only in the second...

create-group-expression

arglist: (indexes? expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
In indexes? you put a list of lists. The first value indicates from which index you want
to start a group expression (like crescendo, or slur...), and the second indicates when
you want the group to stop. In expression you pt the kind of expression you want. In
parts if you put :all, the rule will be applied on all parts. if you put 1 only in the first,
second only in the second... ATTENTION : index are in the cosntraints way: it means
that 1 is for the first, 2 for the second... and not as in lisp... (O for the first, 1 for the
second...)

create-individual-expression

arglist: (index? expression parts)

package: JBS-CONSTRAINTS
menu: Voice-Leading-RulesICreate-Expressions-Tools
In index? you put the indexes on which you want to put some expression.. In parts if
you put :all, the rule will be applied on all parts. if you put 1 only in the first, second
only in the second... ATTENTION : index are in the cosntraints way: it means that 1 is
for the first, 2 for the second... and not as in lisp... (O for the first, 1 for the second...)

descending-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS

A. BOX REFERENCE 178

menu: Pitch-RulesIShaping-Rules
This rule obliges all the value to be descending ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

descending-sub-group-no-repet-rule

arglist: (nth-? mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges the nth (put in nth-?) values of a list of lists to be descending without
any repetition. ATTENTION : THE HEURISTIC MODE IT IS NOT WORKING

descending-sub-group-with-repet-rule

arglist: (nth-? mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges the nth (put in nth-?) values of a list of lists to be descending with
repetitions. ATTENTION : The Heuristic implementation can not work.

descending-without-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule obliges all the value to be descending without any repetition. ATTENTION :
in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

direct-analysis-rule

arglist: (analysis mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule asks the engine to put out a solution identical to the one put in profile. As you
understand, this rule is usefull only as heuristic! ATTENTION : in the mode true/false,
the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

distance-rule

arglist: (pattern distance which? mode? weight)

package: JBS-CONSTRAINTS
menu: Pattern-RulesIDistance-Rules

A. BOX REFERENCE 179

This is a morphological rule. It asks to the engine those solutions who have a distance
- given in ’distance - with the ’pattern. In which? you can chose if you want an equal
distance ’=, a more little distance ’< or a bigger distance ’>. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible

do-not-reach-that-interval-rule

arglist: (how-many interval mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
Does not reach a given interval in how-many notes

do-reach-that-interval-rule

arglist: (how-many interval mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
Does reach a given interval in how-many notes

energy-profile-rule

arglist: (energy-profile mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

find-apply-approx-absolute-sum-rule

arglist: (sum approx mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule finds out the candidates that summed together (in the absoulte mode) they
give as a risult the same value put in sum. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

find-apply-approx-sum-rule

arglist: (sum approx mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule finds out the candidates that summed together they give as a risult the same
value put in sum. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 180

find-apply-global-absolute-sum-rule

arglist: (sum mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule finds out the candidates that summed together (in an absolute mode) they
give as a risult the same value put in sum. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

find-apply-global-sum-rule

arglist: (sum mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule finds out the candidates that summed together they give as a risult the same
value put in sum. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

find-this-ptrn-n-times-rule

arglist: (pattern repeat-ptrn mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
This rule looks for solutions having patterns with a giveen length of element put in
ptrn-length. In repeated-ptrn you have to put how many time do you want the pattern
to be repeated. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

index-applied-sum-rule

arglist: (index sum mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution to have elements that
summed together they give back the number put in sum. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible ATTENTION: HEURISTIC NOT YET IMPLEMENTED.

index-higher-rule

arglist: (index value mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution to be higher than the
value indicated in ’value’.. ATTENTION : in the mode true/false, the rule is perfectly

A. BOX REFERENCE 181

applied. In the mode heuristic, the rule is applied as much as possible ATTENTION:
HEURISTIC NOT YET IMPLEMENTED.

index-interval-rule

arglist: (index allowed absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges a given interval indicated with ’index’ to be a member of a list of
possible intervals indicated in ’allowed’. If the menu ’absolute?’ is ’absolute, that means
that intervals are intented in absolute mode. If this menu is ’up/down’, that means that
the intervals are divided into ascending and descending. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible

index-length-rule

arglist: (index length mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution to have the length put
in ’length’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible ATTENTION: HEURISTIC NOT
YET IMPLEMENTED.

index-lower-rule

arglist: (index value mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution to be lower than the
value indicated in ’value’.. ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible ATTENTION:
HEURISTIC NOT YET IMPLEMENTED.

index-nth-rule

arglist: (index nth? what? mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the nth (indicate from 0 to n) of the index (indicated with i1, i2, i3...)
to be the value put in what?. ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible ATTENTION:
HEURISTIC NOT YET IMPLEMENTED.

A. BOX REFERENCE 182

index-pitch-rule

arglist: (index pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
For the give index (i1, i2, i3...) only the pitches indicated in ’pitch’ will be allowed in
any octave. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

index-rule

arglist: (index value mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution to be the value indicated
in ’value’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

interval-structure-rule

arglist: (interval-structure mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges elements to have the given ’interval-structure’. N.B. BE CAREFULL: the
number of intervals put in ’interval-stricture’ has to be one element less than the number
of candidates you put in the search space!. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

item-sub-group-member-rule

arglist: (sub-group-length item-index allowed mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
Item indicated with ’item index’ will be a member of ’allowed’ elements in each sub
group of length ’sub-group-length’. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule is applied as much as possible

jump-resolution-rule

arglist: (interval resolution mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
If an interval is higher than the value put in interval, the next interval as to go in the
opposite direction and it has to be smaller than the value put in resolution.

A. BOX REFERENCE 183

length-sub-group-applied-sum-rule

arglist: (length? mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule obliges each sub list of the solution ti have an applied sum equal to length?.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

length-sub-group-rule

arglist: (curve-min curve-max steps lengths mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the sub solutions to have a length accordingly to the list put in ’lengths’.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

logic-or-condition

arglist: (&rest rules)

package: JBS-CONSTRAINTS
menu: Utilities
It is an exensible box. TO BE CONTINUED...

make-?1

arglist: (list)
package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of constraints candidates like ?1 ?2 ?3...

make-?1-from-to

arglist: (from to)

package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of constraints candidates like ?from ... ?to

make-i1

arglist: (list)
package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of i1 i2 i3 accordingly with the list of number you put in list.

A. BOX REFERENCE 184

make-i1-from-to

arglist: (from to)

package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of constraints candidates like ?from ... ?to

member-rule

arglist: (list mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges any element of the solution to belong to the elements indicated in
’domain’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

mk-chain-candidates

arglist: (list groups)

package: JBS-CONSTRAINTS
menu: Utilities
FROM MIKAEL LAUSRON : it creates a list of candidates that share a high level of
common elements. In list you put all the range of candidates. In groups how many sub
group you want to create.

mk-fix-profile-rule

arglist: (profile mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule asks the engine to put out a solution identical to the one put in profile. As you
understand, this rule is usefull only as heuristic! ATTENTION : in the mode true/false,
the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

mk-latin-matrix-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Structure-RulesIMatrix-Rules
This rule create a latin matrix like following :
1 3 2 4
2 1 4 3
3 4 1 2
4 2 3 1

A. BOX REFERENCE 185

ATTENTION : It works with list of lists. ATTENTION : in the mode true/false, the rule
is perfectly applied. In the mode heuristic, the rule is applied as much as possible

mk-linear-candidates

arglist: (lista how-many)

package: JBS-CONSTRAINTS
menu: Utilities
it creates a list of candidates having for each element of list, with a positive and negative
step indicated in ’how-many. Be careful the increasing or decreasing step is always 1.

mk-pitch-candidates

arglist: (pitch octave)

package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of pitches entered in ’pitch for number of octaves indicate in ’octave. If
you put 1 you will obtain one octave lower and upper of the original one.

mk-pitch-candidates-not-symmetric

arglist: (pitch down up)

package: JBS-CONSTRAINTS
menu: Utilities
It creates a list of pitch candidates. In pitch you put the note yuo want to be repeated.
In down and up you indicate how many octaves you want the pitch to be transponsed
down and in up.

mk-profile-pitch-modulo-rule

arglist: (pitches mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule asks the engine to put out a solution of pitches having the same modulo 12 of
the given profile. It is a OTTAVIATORE. ATTENTION : in the mode true/false, the rule
is perfectly applied. In the mode heuristic, the rule is applied as much as possible

mk-profile-pitch-rule

arglist: (curve-min curve-max steps profile approx mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule asks the engine to put out a solution identical to the one put in profile. As you
understand, this rule is usefull only as heuristic! ATTENTION : in the mode true/false,

A. BOX REFERENCE 186

the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

mk-profile-rule

arglist: (curve-min curve-max steps profile decimals mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule asks the engine to put out a solution identical to the one put in profile. As you
understand, this rule is usefull only as heuristic! ATTENTION : in the mode true/false,
the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

mk-range-candidates

arglist: (lista how-many step)

package: JBS-CONSTRAINTS
menu: Utilities
it creates a list of candidates having for each element of list, with a positive and negative
step indicated in ’step and in the range indicated in ’range.

mk-symbol-structure-rule

arglist: (structure mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
This rule obliges the solution to be as indicated in structure. You understand that this
rule has meaning only as heuristic. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule is applied as much as possible

modulo-x-repetition-rule

arglist: (modulo mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule allows any candidate having the same modulo given in modulo. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible. N.B. USEFULL IN QUANTIFICATION OF DURATIONS.

more-first-repeated-than-second-rule

arglist: (element-1 element-2 mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules

A. BOX REFERENCE 187

This rule asks the engine to have a solution with the first element repeated more times
than the second. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

no-absolute-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
It does not allow any repetition in abslute mode inside a solution. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied
as much as possible

no-consecutive-equal-intervals-rule

arglist: (how-many mode? absolute? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule does not allow any repetition of intervals for a length put in ’how-many’. If the
menu ’absolute?’ is ’absolute, that means that intervals are intented in absolute mode.
If this menu is ’up/down’, that means that the intervals are divided into ascending and
descending. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

no-consecutive-pulses-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
Two positive values can not be consecutive. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

no-consecutive-rests-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
Two negative values can not be consecutive. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

no-interval-local-repetition-rule

arglist: (absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules

A. BOX REFERENCE 188

This rule does not allowed any local repetition of intervals. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible

no-interval-repetition-rule

arglist: (mode? absolute? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule does not allow any repetition of intervals. If the menu ’absolute?’ is ’absolute,
that means that intervals are intented in absolute mode. If this menu is ’up/down’, that
means that the intervals are divided into ascending and descending. ATTENTION : in
the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

no-local-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule dos not allow any repetition. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule is applied as much as possible

no-locally-repeated-given-interval-rule

arglist: (interval absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges a solution not to have a given ’interval’ locally repeated. It is a sort of
no-local-repetition but limited to the given interval. ATTENTION : in the mode true/-
false, the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

no-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule dos not allow any repetition. ATTENTION : in the mode true/false, the rule is
perfectly applied. In the mode heuristic, the rule is applied as much as possible

no-resulting-interval-rule

arglist: (interval mode? weight)

package: JBS-CONSTRAINTS

A. BOX REFERENCE 189

menu: Generic-RulesIInterval-Rules
This rule does not allow the existence of the given ’interval’ even as the result of the
verticality of all the elements of a solution. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

no-shape-pattern-lcl-repetition-rule

arglist: (ptrn-length mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
This rule does not allow two consecutive pattern described in the dirct-analys format. In
Italiano : questa regola non ammette due pattern consecutivi la cui descrizione basata
sul direct analys di morphologie: chiama Filippo se non ti ricordi...

no-spaced-repetition-rule

arglist: (candidates mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This function does not allow any repetition for an element and another. The distance
between the two elements is indicated with the numbers put in ’candidates’. For exam-
ple if you put (1 4) it means that each element has to be different from the fourth after
itself. If you put (1 7) that means that an element has to be different from the seventh
after itself. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible.

not-allowed-chain-rule

arglist: (element following mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges a given element, NOT to be followed by those elements eneterd in
following. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

not-allowed-intervals-rule

arglist: (intervals absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule does not allow the intervals indicated in ’intervals’. If the menu ’absolute?’
is ’absolute, that means that intervals are intented in absolute mode. If this menu
is ’up/down’, that means that the intervals are divided into ascending and descending.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

A. BOX REFERENCE 190

not-allowed-pitch-class-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the class (for instance a minor triad) indicated in ’pitch’ will be allowed in any
octave. ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode
heuristic, the rule does not work because of SLEN...

not-allowed-pitch-class-sub-list-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This function outputs a solution having only the class (for instance minor triad) indi-
cated in ’pitch’ will NOT be allowed in any octave including also other notes. That
means that is I’m looking for NOT HAVING a minor triad in a 5 notes chord, the solu-
tion will look if a minor triad exists inside the 5 notes chord. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule does not work
because of SLEN...

not-allowed-pitch-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the pitches indicated in ’pitch’ will be allowed in any octave. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied
as much as possible

not-allowed-pitch-structure-rule

arglist: (pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
Only the pitches indicated in ’pitch’ will be allowed in any octave and in any position.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule does not work because of SLEN...

not-bigger-interval-rule

arglist: (limit sign? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
First you have to define if you work on positif or negatif intrevals using the menu ’sign?’.
If you chose ’+’, it means that this function does not allow interval higher than the one

A. BOX REFERENCE 191

entered in ’limit’ only for positif interval. If you chose ’-’ it means that this function
does not allow interval higher than the one entered in ’limit’ only for negatif interval.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

not-complementary-interval-rule

arglist: (interval mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule does not allow the existence of a given interval as the product of two consecu-
tive intervals. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

not-consecutive-ascending-rule

arglist: (how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow more ascending value than as indicate in how-many. ATTEN-
TION : in the mode true/false, the rule is perfectly applied. In the mode heuristic, the
rule is applied as much as possible

not-consecutive-descending-rule

arglist: (how-many mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow more descending value than as indicate in how-many. ATTEN-
TION : in the mode true/false, the rule is perfectly applied. In the mode heuristic, the
rule is applied as much as possible

not-consecutive-equal-length-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
The length of two consecutive groups has not to be equal. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible

not-consecutive-equal-rule

arglist: (how-many mode? weight)

package: JBS-CONSTRAINTS

A. BOX REFERENCE 192

menu: Pmc-RulesIGeneric-Rules
This rule does not allow more equal values than as indicate in how-many. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

not-consecutive-number-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow numeric candidate to be followed by its consecutive. It means
that if candidates are: 1 2 3 4 5 there will not be 1 follow by 2, but by 3, or 4 or
5. ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode
heuristic, the rule is applied as much as possible

not-higher-than-rule

arglist: (limit mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges any element of the solution not to belong to the elements indicated
in ’domain’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

not-index-interval-rule

arglist: (index allowed absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges a given interval indicated with ’index’ NOT to be a member of a list of
possible intervals indicated in ’allowed’. If the menu ’absolute?’ is ’absolute, that means
that intervals are intented in absolute mode. If this menu is ’up/down’, that means that
the intervals are divided into ascending and descending. ATTENTION : in the mode
true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied as
much as possible

not-index-pitch-rule

arglist: (index pitch mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
For the give index (i1, i2, i3...) only the pitches indicated in ’pitch’ will NOT be allowed
in any octave. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 193

not-index-rule

arglist: (index value mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges the value (indicated as index) of the solution NOT to be the value
indicated in ’value’. ATTENTION : in the mode true/false, the rule is perfectly applied.
In the mode heuristic, the rule is applied as much as possible ATTENTION: HEURISTIC
NOT YET IMPLEMENTED.

not-interval-structure-rule

arglist: (interval-structure mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges elements not to have the given ’interval-structure’. N.B. BE CARE-
FULL: the number of intervals put in ’interval-stricture’ has to be one element less than
the number of candidates you put in the search space!. ATTENTION : in the mode true/-
false, the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

not-length-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
No repetition of sub group equal length. ATTENTION : in the mode true/false, the rule
is perfectly applied. In the mode heuristic, the rule is applied as much as possible

not-lower-than-rule

arglist: (limit mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges any element of the solution not to belong to the elements indicated
in ’domain’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

not-member-rule

arglist: (list mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule obliges any element of the solution not to belong to the elements indicated
in ’domain’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 194

not-modulo-x-local-repetition-rule

arglist: (modulo mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow any candidate having the same local modulo given in mod-
ulo. ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode
heuristic, the rule is applied as much as possible N.B. USEFULL IN QUANTIFICATION
OF DURATIONS.

not-modulo-x-repetition-rule

arglist: (modulo mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow any candidate having the same modulo given in modulo. AT-
TENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

not-modulo12-local-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule allows only solution without any LOCAL repetition in any octave. ATTENTION
: in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

not-modulo12-repetition-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
This rule allows only solution without any repetition in any octave. ATTENTION : in the
mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is applied
as much as possible

not-obliged-interval-chain-rule

arglist: (interval int-list mode? absolute? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges an interval NOT to be followed by those put in int-list. If the menu
’absolute?’ is ’absolute, that means that intervals are intented in absolute mode. If
this menu is ’up/down’, that means that the intervals are divided into ascending and

A. BOX REFERENCE 195

descending. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

not-ptrn-find-rule

arglist: (ptrn-length repeat-ptrn mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
This rule looks for solutions NOT having patterns with a giveen length of element put in
ptrn-length. In repeated-ptrn you have to put how many time do you want the pattern
to be repeated. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

not-repeated-element-sub-group-rule

arglist: (sub-group-length mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow any repeated element into a given sub-group. The input sub-
group-length indicates the length of the sub-group. ATTENTION : in the mode true/-
false, the rule is perfectly applied. In the mode heuristic, the rule is applied as much as
possible

not-repeated-list-sub-group-rule

arglist: (sub-group-length mode? weight)

package: JBS-CONSTRAINTS
menu: Pmc-RulesIGeneric-Rules
This rule does not allow any repeated list into a given sub-group. The input sub-group-
length indicates the length of the sub-group. ATTENTION : in the mode true/false, the
rule is perfectly applied. In the mode heuristic, the rule is applied as much as possible

not-repeated-modulo12-sub-group-rule

arglist: (sub-group-length mode? weight)

package: JBS-CONSTRAINTS
menu: Interval-RulesIPitch-Rules
There are no modulo 12 repetition inside each sub group indicated with ’sub-group-
length’. ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode
heuristic, the rule is applied as much as possible

not-rpt-elmts-in-lists-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS

A. BOX REFERENCE 196

menu: Pmc-RulesIGeneric-Rules
This rule does not allow any element of one list to be repeated in the following list.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

not-smaller-interval-rule

arglist: (limit sign? mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
First you have to define if you work on positif or negatif intrevals using the menu ’sign?’.
If you chose ’+’, it means that this function does not allow interval lower than the one
entered in ’limit’ only for positif interval. If you chose ’-’ it means that this function
does not allow interval lower than the one entered in ’limit’ only for negatif interval.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

obliged-interval-chain-rule

arglist: (interval int-list mode? absolute? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges an interval to be followed by those put in int-list. If the menu ’ab-
solute?’ is ’absolute, that means that intervals are intented in absolute mode. If this
menu is ’up/down’, that means that the intervals are divided into ascending and de-
scending. ATTENTION : in the mode true/false, the rule is perfectly applied. In the
mode heuristic, the rule is applied as much as possible

pitch-extract-from-score-editor

arglist: (complex-list mensural-or-not?)

package: JBS-CONSTRAINTS
menu: Utilities
This function extracts pitches from a Score-Editor in the chord format. That means that
the output for a songle note will be like this (60) and for a chord like this (60 62 69)

ptrn-find-rule

arglist: (ptrn-length repeat-ptrn which? mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
This rule looks for solutions having patterns with a giveen length of element put in
ptrn-length. In repeated-ptrn you have to put how many time do you want the pattern
to be repeated. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 197

repeat-interval-rule

arglist: (interval which? times mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges a solution to have a given interval repeated many times as indicated
in time. The interval is considered ins the absolute mode. If the menu which? is set on
<, it means that the given interval has to be repeated a number of time inferior to the
one put in times. If the menu which? is set on =, it means that the given interval has to
be repeated a number of time equal to the one put in times. If the menu which? is set
on >, it means that the given interval has to be repeated a number of times bigger than
the one put in times. ATTENTION : in the mode true/false, the rule is perfectly applied.
In the mode heuristic, the rule is applied as much as possible

repeat-resulting-interval-rule

arglist: (resulting-interval which? times mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
This rule obliges a solution to have a given resulting-interval repeated many times as
indicated in time. A resulting interval is an interval between a note with any possible
other notes. In this sense, look at the function find-all-intervals (that you can call
using the package jbs-constraints::find-all-intervals). This function gives all the interval
between all notes of a sequence. So a resulting interval is an interval that is the result
of the function find-all-intervals.
If the menu which? is set on <, it means that the given interval has to be repeated a
number of time inferior to the one put in times. If the menu which? is set on =, it
means that the given interval has to be repeated a number of time equal to the one put
in times. If the menu which? is set on >, it means that the given interval has to be
repeated a number of times bigger than the one put in times.
ATTENTION : in the mode true/false, the rule is perfectly applied. In the mode heuristic,
the rule is applied as much as possible

repeated-pattern-rule

arglist: (pattern times which? absolute? mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-RulesIPattern-Rules
This rule is for pattern repetitions. In ’pattern you put what you want to be repeated. In
’times you put how many times you want teh pattern to be repeated. In ’which? you can
chose among ’< it that means less times, ’= that means an exact number of times and
’> that means more times. In ’absolute? you can chose if you are looking for positive
elements (absolute) or not. ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible

A. BOX REFERENCE 198

resulting-interval-rule

arglist: (interval mode? weight)

package: JBS-CONSTRAINTS
menu: Generic-RulesIInterval-Rules
A resulting interval is an interval between a note of a sequence with any possible other
notes of the same sequence. In this sense, look at the function find-all-intervals (that
you can call using the package jbs-constraints::find-all-intervals). This function gives
all the interval between all notes of a sequence. So a resulting interval is an interval
that is the result of the function find-all-intervals. Resulting-interval-rule [1] obliges
the solution to have, among all the intervals among all eh notes of the sequence, the
defined interval. ATTENTION : in the mode true/false, the rule is perfectly applied. In
the mode heuristic, the rule is applied as much as possible

s-pmc-all-notes-included-on-beat-rule

arglist: (beat-number all-notes mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
all the notes set in all-notes have to be on a given beat in every measure

s-pmc-all-notes-included-rule

arglist: (all-notes mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
all notes of a chord of three notes into 4 parts

s-pmc-allowed-harm-int-rule

arglist: (intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
The given intervals set in INTERVALS have be inside the solution.

s-pmc-allowed-harm-rule

arglist: (mainchords chord-subsets mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
allowed harmony even incomplete

A. BOX REFERENCE 199

s-pmc-allowed-harmony-in-given-measures-rule

arglist: (harmony? measures mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule forces one or a series of measures to have a specific harmony set in harmony?
(in modulo 12)

s-pmc-allowed-harmony-on-beat-rule

arglist: (harmony? beats? mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule forces one or a series of beats to have a specific harmony set in harmony? (in
modulo 12)

s-pmc-allowed-interval-rule

arglist: (intervals absolute? parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Melodic-RulesIGeneric-Poly-RulesIInterval-Poly-Rules
This rule outputs a solution having only the interval entered in allowed-intervals. With
the menu intervall-mod you can chose if the intervals are in absolute value or not. In
the menu mode? you can chose if the rule is true /faulse or heuristic. ATTENTION: in
parts if :all it means that the rule is vfor all the parts. If you want specific part to be
constrained you have to put: :parts1, or :parts2...

s-pmc-allowed-pitch-class-sub-group-rule

arglist: (pitch parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Generic-Poly-RulesIInterval-Poly-RulesIPitch-Poly-Rules
This function outputs a solution where the class (for instance minor triad) indicated in
’pitch’ WILL be allowed in any octave including also other notes. That means that is I’m
looking for NOT HAVING a minor triad in a 5 notes chord. ATTENTION IN HEURISTIC
MODE NOT YET IMPLEMENTED CORRECTELY

s-pmc-allowed-pitch-rule

arglist: (pitch parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Generic-Poly-RulesIInterval-Poly-RulesIPitch-Poly-Rules
This rule outputs a solution having only the pitch (in modulo 12) entered in pitch. In
the menu mode? you can chose if the rule is true /faulse or heuristic. ATTENTION: in
parts if :all it means that the rule is vfor all the parts. If you want specific part to be
constrained you have to put: :parts1, or :parts2...

A. BOX REFERENCE 200

s-pmc-bigger-int-between-2-parts-rule

arglist: (part1 part2 interval mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
bigger vertical intervals between two parts

s-pmc-chords-succession-rule

arglist: (database mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
data base oriented chords succession with pwgl value

s-pmc-forbid-harm-int-rule

arglist: (intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Structure-RulesIMatrix-Rules
The given intervals set in INTERVALS have be inside the solution.

s-pmc-forbidden-int-relation-between-2-parts-rule

arglist: (part1 part2 interval mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
forbidden interval relation between two parts with a given interval (false relazioni do
do#...do# do...)

s-pmc-forbidden-inversions-rule

arglist: (database mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
forbidden inversions...no quarta e sesta

s-pmc-forbidden-succession-rule

arglist: (interval1 interval2 mode? weight)

package: JBS-CONSTRAINTS
menu: Harmonic-RulesIVoice-Leading-Rules
no triton followed by a fifth...

A. BOX REFERENCE 201

s-pmc-given-voice-rule

arglist: (given-voice parts mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-Poly-RulesIResolutions-Poly-RulesIShaping-Poly-Rules
given voice

s-pmc-hidden-parallel-rule

arglist: (intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Harmonic-RulesIVoice-Leading-Rules
hidden parallel fifths/octs with stepwise upper voice

s-pmc-index-all-notes-included-rule

arglist: (index all-notes mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule forces a solution to have the number of different notes set in ’all-notes’ on a
given index.

s-pmc-index-allowed-harmony-rule

arglist: (harmony? index mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule allows a specific harmony set in harmony? on a giv en index.

s-pmc-index-higher-rule

arglist: (index value parts mode? weight)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
Its an index rule obliging an index to be higher than 72 (in this example) for a given
part.

s-pmc-index-lower-rule

arglist: (index value parts mode? weight)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
Its an index rule obliging an index to be lower than 72 in this example for a given part.

A. BOX REFERENCE 202

s-pmc-index-not-allowed-harmony-rule

arglist: (harmony? index mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule allows a specific harmony set in harmony? on a giv en index.

s-pmc-index-rule

arglist: (index value parts mode? weight)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
Its an index rule for a give part....

s-pmc-interval-bigger-rule

arglist: (interval parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Melodic-RulesIGeneric-Poly-RulesIInterval-Poly-Rules
intervals have to be bigger than....

s-pmc-interval-smaller-rule

arglist: (interval parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Melodic-RulesIGeneric-Poly-RulesIInterval-Poly-Rules
intervals have to bi bigger than....

s-pmc-intv-between-2-parts-rule

arglist: (part1 part2 intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
allowd vertical intervals between contralto and tenor

s-pmc-jump-resolution-rule

arglist: (jump-size resolution parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Interval-Poly-RulesIPitch-Poly-RulesIResolutions-Poly-Rules
The PMC-JUMP-RESOLUTION-RULE defines that if there is a jump bigger than the one
set in jump-size, the next interval has to be smaller than the one set in resolution and
in the opposite direction than previous.

A. BOX REFERENCE 203

s-pmc-mk-profile-rule

arglist: (curve-min curve-max steps profile parts mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-Poly-RulesIResolutions-Poly-RulesIShaping-Poly-Rules
It is the mk-fix-profile-rule but for the score-pmc

s-pmc-n-ascending-rule

arglist: (how-many parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
no more than Xnote ascending....

s-pmc-n-descending-rule

arglist: (how-many parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
no more than Xnote descending

s-pmc-no-crossing-voice-rule

arglist: (mode? weight)

package: JBS-CONSTRAINTS
menu: Harmonic-RulesIVoice-Leading-Rules
no part-crossings

s-pmc-no-lcl-repetition-rule

arglist: (parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
no local repetition in the given voice....

s-pmc-no-open-parallel-rule

arglist: (intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Harmonic-RulesIVoice-Leading-Rules
no open parallel...

A. BOX REFERENCE 204

s-pmc-no-reached-intrv-rule

arglist: (how-many interval parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Melodic-RulesIGeneric-Poly-RulesIInterval-Poly-Rules
do not reach a given interval in three given notes...

s-pmc-not-allowed-harm-int-rule

arglist: (intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
The given intervals set in INTERVALS have be inside the solution.

s-pmc-not-allowed-harmony-in-given-measures-rule

arglist: (harmony? measures mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule forces one or a series of measures NOT to have a specific harmony set in
harmony? (in modulo 12)

s-pmc-not-allowed-harmony-on-beat-rule

arglist: (harmony? beats? mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule forces one or a series of beats to NOT have a specific harmony set in harmony?
(in modulo 12)

s-pmc-not-allowed-interval-rule

arglist: (intervals absolute? parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Melodic-RulesIGeneric-Poly-RulesIInterval-Poly-Rules
This rule outputs a solution having only the interval entered in allowed-intervals. With
the menu intervall-mod you can chose if the intervals are in absolute value or not. In
the menu mode? you can chose if the rule is true /faulse or heuristic. ATTENTION: in
parts if :all it means that the rule is vfor all the parts. If you want specific part to be
constrained you have to put: :parts1, or :parts2...

s-pmc-not-allowed-pitch-class-sub-group-rule

arglist: (pitch parts mode? weight &optional expression)

package: JBS-CONSTRAINTS

A. BOX REFERENCE 205

menu: Generic-Poly-RulesIInterval-Poly-RulesIPitch-Poly-Rules
This function outputs a solution where the class (for instance minor triad) indicated
in ’pitch’ will NOT be allowed in any octave including also other notes. That means
that is I’m looking for NOT HAVING a minor triad in a 5 notes chord. ATTENTION IN
HEURISTIC MODE NOT YET IMPLEMENTED CORRECTELY

s-pmc-not-allowed-pitch-rule

arglist: (pitch parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Generic-Poly-RulesIInterval-Poly-RulesIPitch-Poly-Rules
This rule outputs a solution having only the pitch (in modulo 12) entered in pitch. In
the menu mode? you can chose if the rule is true /faulse or heuristic. ATTENTION: in
parts if :all it means that the rule is vfor all the parts. If you want specific part to be
constrained you have to put: :parts1, or :parts2...

s-pmc-not-higher-rule

arglist: (limit parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
The S-PMC-NOT-HIGHER-RULE is a rule obliging any value to be higher than a given
number

s-pmc-not-intv-between-2-parts-rule

arglist: (part1 part2 intervals mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
allowd vertical intervals between contralto and tenor

s-pmc-not-lower-rule

arglist: (limit parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Score-Pmc-RulesIMelodic-RulesIGeneric-Poly-Rules
S-PMC-NOT-LOWER-RULE is a rule obliging any value to be lower than a given number

s-pmc-not-n-consecutive-harm-int-rule

arglist: (part1 part2 repetition mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
in repetition you put how many equal intervals you do not allowed between two parts.
The concerned parts are to be specified in part1 and part2.

A. BOX REFERENCE 206

s-pmc-not-n-same-directions-rule

arglist: (part1 part2 repetition mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
This rule does not admit more than n repetitions of the same directions between two
voices. In part1 and part2 you define which are the intersted parts. In repetition you
set how many same directions do you admit.

s-pmc-not-tone-resolution-rule

arglist: (sensibile resolution parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Interval-Poly-RulesIPitch-Poly-RulesIResolutions-Poly-Rules
the sensibile (in mod 12) has NOT to solve on resolution (in mod12)...

s-pmc-or-condition

arglist: (rule1 rule2)

package: JBS-CONSTRAINTS
menu: Utilities
:or condition from Laurson...

s-pmc-preferred-duplicate-rule

arglist: (dups mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
prefers a given duplicates in mod12

s-pmc-smaller-int-between-2-parts-rule

arglist: (part1 part2 interval mode? weight)

package: JBS-CONSTRAINTS
menu: Shaping-Poly-RulesIHarmonic-Rules
smaller vertical intervals between two parts

s-pmc-tone-resolution-rule

arglist: (sensibile resolution parts mode? weight &optional expression)

package: JBS-CONSTRAINTS
menu: Interval-Poly-RulesIPitch-Poly-RulesIResolutions-Poly-Rules
the sensibile (in mod 12) has to solve on resolution (in mod12)...

A. BOX REFERENCE 207

structured-order-sum-rule

arglist: (candidates order sum mode? weight)

package: JBS-CONSTRAINTS
menu: Distance-RulesIStructure-Rules
In candidates you put in sconstraints symbol the candidates you are looking for (ex. ?1
?2 ?3). Then in order you put a list of indexes that has to be applied to a posn-match for
the candidates /////(ex. (0 1 0 2 2 2 2 0 1)). Then in sum you put the value that the
3 candidates you haveindicated, summmed together in the given order. ATTENTION :
in the mode true/false, the rule is perfectly applied. In the mode heuristic, the rule is
applied as much as possible

sub-group-mk-profile-rule

arglist: (curve-min curve-max nth-? steps profile mode? weight)

package: JBS-CONSTRAINTS
menu: Pitch-RulesIShaping-Rules
This rule asks the engine to put out a solution in which for each sub-groups the nth
(put in nth-?) has to be identical to the one put in profile. As you understand, this rule
is usefull only as heuristic!ATTENTION : in the mode true/false, the rule is perfectly
applied. In the mode heuristic, the rule is applied as much as possible

Box Index
1-, 168
2D-Editor, 14–16, 29, 63, 68, 69, 71, 78,

110, 129
2D-constructor, 129

Abstraction, 17, 21, 22, 29, 31–33, 36, 56,
58, 61, 62, 66, 69, 74–76, 78, 80,
81, 86, 88–90, 97, 118, 120, 121,
156–165, 167, 168

allowed-chain-rule, 28
allowed-distant-intervals-rule, 40
allowed-intervals-rule, 12, 16, 40, 92, 152
allowed-pitch-class-rule, 56
allowed-pitch-class-sub-list-rule, 56
allowed-pitch-rule, 55
allowed-pitch-structure-rule, 56
allowed-polarized-pitch-rule, 55
alternating-+/-first-elmt-rule, 86
alternating-+/-last-elmt-rule, 86
alternating-positive-negative-rule, 85
always-more-little-included-rule, 76
any-note-repeated-rule, 60
apply, 50–52, 81, 150
apply-interval-global-sum-rule, 51
apply-interval-sum-rule, 50
arithm-ser, 17, 23–25, 28, 39–56, 58–65,

67, 68, 70–73, 77, 83–85, 148,
150, 167, 168

arithm-ser-stop, 129
ascending-rule, 65
ascending-sub-group-no-repet-rule, 66
ascending-sub-group-with-repet-rule, 66
ascending-without-repetition-rule, 43, 49,

52, 56, 58, 59, 65

chain-common-element-lists-rule, 89
chain-more-little-included-common-lists-

rule, 90
Chord-Editor, 12–17, 20–22, 28, 39–56,

58–75, 78, 89, 90, 111–113, 115–
123, 125–128, 131–133, 147–149,
151, 152, 156

collect-rules, 9, 11, 12, 14–16, 19, 20, 23–
37, 39–56, 58–77, 79–86, 88–90,
94–123, 125–128, 130–144, 150,
152, 153, 166–168

collect-script-rules, 134–143, 145, 154
comment-box, 7–9, 11–20, 23–37, 39–

56, 58–90, 92–128, 130–145, 147–
154, 166–168

const-value, 168
contrasts-lev-1, 71
count-any-element-rule, 37
count-common-elements-rule, 36
count-negative-intervals-rule, 54
count-negative-rule, 83
count-positive-intervals-rule, 54
count-positive-rule, 83
count-this-modulo-rule, 61
count-this-note-rule, 61
create-expression-for-beats, 142
create-expression-for-measures, 143
create-expression-not-on-main-beat, 141,

154
create-expression-on-chord-sequence, 138
create-expression-on-grace-note-sequence,

139
create-expression-on-main-beat, 140, 154
create-expression-on-note-sequence, 137
create-face-value-expression, 136, 145
create-group-expression, 135, 145
create-individual-expression, 134, 145

descending-rule, 65
descending-sub-group-no-repet-rule, 66
descending-sub-group-with-repet-rule, 66
descending-without-repetition-rule, 65
direct-analysis, 70
direct-analysis-rule, 70
distance-rule, 77
do-not-reach-that-interval-rule, 49
do-reach-that-interval-rule, 49
dx-x, 22, 75

energy-profile-rule, 71

208

BOX INDEX 209

enp-script, 134–143, 145, 154

find-all-intervals, 44, 47, 51
find-apply-approx-absolute-sum-rule, 80
find-apply-approx-sum-rule, 80
find-apply-global-absolute-sum-rule, 80
find-apply-global-sum-rule, 80, 150
find-this-ptrn-n-times-rule, 73
first, 12, 23, 26, 29–37, 39–56, 58–68, 70–

73, 79–85, 89, 90, 95, 98, 99, 101–
103, 105–109, 150, 152, 166–168

flat, 21, 22, 25, 27, 28, 51, 75, 81, 86, 89,
90, 151

flat-once, 69

g+, 129
g-, 168
g-abs, 50, 51, 81
g-mod, 23, 55, 56, 58–61, 64
g-round, 78, 129
g-scaling, 78, 129
g/, 81–86
group-list, 25–27

index-applied-sum-rule, 33
index-higher-rule, 30
index-interval-rule, 42, 45, 48
index-length-rule, 31
index-lower-rule, 30
index-nth-rule, 32
index-pitch-rule, 59
index-rule, 9, 11, 12, 28, 30, 45, 166
interval-structure-rule, 53
item-sub-group-member-rule, 27

jump-resolution-rule, 48

length, 25, 64, 67, 70, 71, 79, 82, 129,
167, 168

length-sub-group-applied-sum-rule, 81, 86
length-sub-group-rule, 29
list, 13, 129
logic-or-condition, 150

make-i1-from-to, 168
member-rule, 34
mk-chain-candidates, 148
mk-fix-profile-rule, 67

mk-latin-matrix-rule, 88
mk-linear-candidates, 147
mk-pitch-candidates, 17, 149
mk-pitch-candidates-not-symmetric, 149
mk-profile-pitch-modulo-rule, 64
mk-profile-pitch-rule, 63
mk-profile-rule, 14–16, 68
mk-range-candidates, 147
mk-symbol-structure-rule, 79
modulo-x-repetition-rule, 23
more-first-repeated-than-second-rule, 74
Multi-PMC, 7–9, 11–17, 19–37, 39–56,

58–77, 79–86, 88–90, 144, 150,
152, 166–168

Multi-Score-PMC, 93–123, 125–128, 130–
144, 153, 156–165

no-consecutive-equal-intervals-rule, 41
no-consecutive-pulses-rule, 84
no-consecutive-rests-rule, 84
no-interval-local-repetition-rule, 39
no-interval-repetition-rule, 39
no-local-repetition-rule, 18–20, 144, 152
no-locally-repeated-given-interval-rule, 39
no-repetition-rule, 9, 11, 12, 15, 16, 79,

144, 166–168
no-resulting-interval-rule, 47
not-allowed-chain-rule, 28
not-allowed-intervals-rule, 40
not-allowed-pitch-class-rule, 58
not-allowed-pitch-class-sub-list-rule, 58
not-allowed-pitch-rule, 55
not-allowed-pitch-structure-rule, 58
not-bigger-interval-rule, 46
not-complementary-interval-rule, 52
not-consecutive-ascending-rule, 24
not-consecutive-descending-rule, 24
not-consecutive-equal-length-rule, 29
not-consecutive-equal-rule, 24
not-consecutive-number-rule, 24
not-higher-than-rule, 35
not-index-interval-rule, 45
not-index-pitch-rule, 59
not-index-rule, 30
not-interval-structure-rule, 53
not-length-repetition-rule, 29

BOX INDEX 210

not-lower-than-rule, 35
not-member-rule, 34
not-modulo-x-local-repetition-rule, 23
not-modulo-x-repetition-rule, 23
not-modulo12-local-repetition-rule, 62
not-modulo12-repetition-rule, 62
not-obliged-interval-chain-rule, 42
not-ptrn-find-rule, 72
not-repeated-element-sub-group-rule, 25
not-repeated-list-sub-group-rule, 26
not-repeated-modulo12-sub-group-rule,

62
not-smaller-interval-rule, 46
nth-random, 168
num-box, 14–17, 25, 63, 68, 69, 119

obliged-interval-chain-rule, 42

pitch-extract-from-score-editor, 109, 151
pitches-durs2simple, 21, 80–86
posn-match, 82
ptrn-find, 72, 73
ptrn-find-rule, 72
pwgl-enum, 81
pwgl-map, 81
pwgl-repeat, 8, 9, 11, 12, 14–17, 20–37,

39–56, 58–75, 77–86, 88–90, 150,
152, 166–168

pwgl-sample, 78
pwgl-switch, 12, 23, 24, 28–30, 34, 35, 39,

40, 42, 43, 45, 47, 49, 53–56, 58,
59, 61, 62, 65, 66, 72, 78–80, 83,
84, 86, 95, 98, 99, 101–103, 105–
109, 111–114, 119, 125, 126

remove, 83–85
repeat-interval-rule, 43
repeat-resulting-interval-rule, 44
repeated-pattern-rule, 75
resulting-interval-rule, 47
reverse, 129
rule-filter, 154

s-pmc-all-notes-included-on-beat-rule, 117
s-pmc-all-notes-included-rule, 115, 118–

121
s-pmc-allowed-harm-int-rule, 114

s-pmc-allowed-harm-rule, 120, 121
s-pmc-allowed-harmony-in-given-

measures-rule, 112, 153
s-pmc-allowed-harmony-on-beat-rule, 113
s-pmc-allowed-interval-rule, 92, 96, 102,

104
s-pmc-allowed-pitch-class-sub-group-rule,

106
s-pmc-allowed-pitch-rule, 96, 97, 105–

109, 115, 117–123, 125–128, 131–
144

s-pmc-bigger-int-between-2-parts-rule,
125

s-pmc-chords-succession-rule, 121
s-pmc-forbidden-int-relation-between-2-

parts-rule, 126
s-pmc-forbidden-inversions-rule, 118
s-pmc-forbidden-succession-rule, 132
s-pmc-given-voice-rule, 109
s-pmc-hidden-parallel-rule, 133
s-pmc-index-all-notes-included-rule, 116
s-pmc-index-allowed-harmony-rule, 111,

116
s-pmc-index-higher-rule, 98
s-pmc-index-lower-rule, 98
s-pmc-index-not-allowed-harmony-rule,

111
s-pmc-index-rule, 95, 98
s-pmc-interval-bigger-rule, 103
s-pmc-interval-smaller-rule, 103, 153
s-pmc-intv-between-2-parts-rule, 122,

127, 128
s-pmc-jump-resolution-rule, 108
s-pmc-mk-profile-rule, 110
s-pmc-n-ascending-rule, 101
s-pmc-n-descending-rule, 101
s-pmc-no-crossing-voice-rule, 114, 125–

128, 130–133, 153
s-pmc-no-lcl-repetition-rule, 100, 144
s-pmc-no-open-parallel-rule, 131
s-pmc-no-reached-intrv-rule, 104
s-pmc-not-allowed-harm-int-rule, 114,

138, 139
s-pmc-not-allowed-harmony-in-given-

measures-rule, 112

BOX INDEX 211

s-pmc-not-allowed-harmony-on-beat-rule,
113

s-pmc-not-allowed-interval-rule, 102, 107
s-pmc-not-allowed-pitch-class-sub-group-

rule, 106
s-pmc-not-allowed-pitch-rule, 97, 105
s-pmc-not-higher-rule, 99
s-pmc-not-intv-between-2-parts-rule, 123
s-pmc-not-lower-rule, 99
s-pmc-not-n-consecutive-harm-int-rule,

127
s-pmc-not-n-same-directions-rule, 128
s-pmc-not-tone-resolution-rule, 107
s-pmc-preferred-duplicate-rule, 119
s-pmc-smaller-int-between-2-parts-rule,

125
s-pmc-tone-resolution-rule, 107
Score-Editor, 21, 29, 31, 32, 74, 76, 80–86,

94–123, 125–128, 130–145, 151,
153, 154, 156–165

simple2score, 21, 80–86
sort-list, 51, 167
structured-order-sum-rule, 82
sub-group-mk-profile-rule, 69

text-box, 7–9, 11, 12, 15, 16, 18–23, 25–
37, 39, 43, 44, 46, 49, 50, 52–56,
58, 62, 63, 67–69, 72–83, 88–90,
92–99, 101–123, 125–128, 131–
143, 152–154, 156–168

value-box, 8, 9, 11, 21, 22, 26, 27, 30,
34, 35, 37, 75, 78, 79, 82, 94–123,
125–143, 153, 156–168

x-append, 152–154, 159–165, 167, 168
x-dx, 39–43, 45, 46, 48, 50, 52–54

	Start-Here
	0-Multi-PMC
	00-Introduction-to-Constraints
	Introduction
	0-The-Multi-PMC
	1-Create-Candidates-for-the-Multi-PMC
	2-The-Multi-PMC-Rules-Application
	3-The-Logical-Conflict-and-the-Heuristic-Rules
	4-A-First-Musical-Example
	5-Specific-Candidates
	6-Heuristic-Rules-and-No-Random-Reserach
	7-Heuristic-Rules-and-Weight
	8-Heuristic-Rules-and-Several-Weights
	9-Ergonomic-Disposition

	01-Generic-Rules
	Generic-Rules
	01-Generic-Rules
	02-Generic-Rules-with-Multi-PMC
	03-Generic-Rules-Candidates
	04-Several-No-Repetitions-on-Durations
	05-Several-No-Repetitions-on-Intervals
	06-Modulo-X-Repetition
	07-Not-Consecutive-Rules
	08-Not-Repeated-Element-Sub-Group
	09-Not-Repeated-List-Sub-Group
	10-Item-Sub-Group-Member
	11-Allowed-Chain-Rules
	12-Length-Rules
	13-Several-Index-Rules
	14-Index-Length-Rule
	15-Index-Nth-Rule
	16-Index-Applied-Sum-Rule
	17-Member-Rules
	18-Not-Higher-or-Lower-than-Rules
	19-Count-Common-Elements-Rule
	20-Count-Any-Element-Rule

	02-Interval-Rules
	Interval-Rules
	01-Several-Interval-No-Repetitions
	02-Several-Allowed-or-Not-Interval-Rules
	03-No-Consecutive-Equal-Interval-Rules
	04-Obliged-or-Not-Interval-Chain
	05-Repeat-Interval
	06-Repeat-Resulting-Interval
	07-Index-or-Not-Index-Interval
	08-Not-Bigger-Not-Smaller-Interval
	09-Resulting-Not-Resulting-Interval
	10-Jump-Resolution
	11-Do-Reach-Do-Not-Reach-That-Interval
	12-Apply-Interval-Sum
	13-Apply-Interval-Global-Sum
	14-Not-Complementary-Interval
	15-Interval-Structure
	16-Count-Positive-Negative-Intervals

	03-Pitch-Rules
	Pitch-Rules
	01-Allowed-and-Not-Allowed-Pitches
	02-Allowed-Pitches-Structure-and-Class
	03-Not-Allowed-Pitches-Structure-and-Class
	04-Index-and-Not-Index-Pitch
	05-Any-Note-Repeated
	06-Count-this-Note-and-Modulo
	07-Not-Repeated-Modulo-12
	08-Mk-Profile-Pitch
	09-Mk-Profile-Pitch-Modulo

	04-Shaping-Rules
	Shaping-Rules
	01-Ascending-Descending-Rule
	02-Ascending-Descending-Sub-Group-Rule
	03-Mk-Fix-Profile-Rule
	04-Mk-Profile-Rule
	05-Sub-Group-Mk-Profile-Rule
	06-Direct-Analysis-Rule
	07-Energy-Profile-Rule

	05-Pattern-Rules
	Shaping-Rules
	01-Ptrn-Find-Not-Ptrn-Find-Rule
	02-Find-this Ptrn-N-Times-Rule
	03-More-First-Repeated-than-Second
	04-Repeated-Pattern-Rule
	05-Always-More-Little-Included-Rule

	06-Distance-Rules
	Distance-Rules
	01-Distance-Rule
	02-Dynamic-Distance-Rule

	07-Structure-Rules
	Structure-Rules
	01-Mk-Symbol-Structure-Rule
	02-Find-Apply-Global-and-Approx-Sum-Rule
	03-Length-Sub-Group-Applied-Sum-Rule
	04-Structured-Order-Sum-Rule
	05-Count-Positive-and-Negative-Rule
	06-No-Consecutive-Rests-or-Pulses-Rule
	07-Alternating-Positive-Negative-Rule
	08-Alternating-plus-minus-First-or-Last-Elmt-Rule
	09-Structure-Identity-Rule

	08-Matrix-Rules
	Matrix-Rules
	01-Mk-Latin-Matrix-Rule
	02-Chain-Common-Element-Lists-Rule
	03-Chain-More-Little-Common-Rule

	0-Multi-Score-PMC
	00-Introduction-to-Score-PMC
	Introduction
	1-The-Rules-for-Multi-Score-PMC
	2-The-Multi-Score-PMC
	3-Multi-Score-PMC-Stantdard-Patch
	4-S-PMC-Rule-Voice-Attribution
	5-S-PMC-Rule-Expressions-Recognition
	6-Logical-Conflict-between-Rules

	01-Melodic-Rules
	1-Generic-Poly-Rules

	1-Several-Index-Rules
	2-Not-Higher-or-Lower-Rules
	3-No-Lcl-Repetition-Rule
	4-N-Ascending-N-Descending-Rules
	2-Intervals-Poly-Rules

	1-Allowed-Not-Allowed-Interval-Rules
	2-Interval-Bigger-Smaller-Rules
	3-No-Reached-Interval-Rule
	3-Pitch-Poly-Rules

	1-Allowed-Not-Allowed-Pitch-Rule
	2-Allowed-Not-Allowed-Pitch-Class-Rule
	4-Resolution-Poly-Rules

	1-Tone-Not-Tone-Resolution-Rule
	2-Jump-Resolution-Rule
	5-Shaping-Poly-Rules

	1-Given-Voice-Rule
	2-Mk-Profile-Rule
	02-Harmonic-Rules
	01-Index-Allowed-Harmony
	02-Allowed-&-Not-Harmony-in-Given-Measures
	03-Allowed-&-Not-Harmony-on-Beat
	04-Allowed-&-Not-Harmonic-Interval
	05-All-Notes-Included
	06-Index-All-Notes-Included
	07-All-Notes-Included-on-Beat
	08-Forbidden-Inversion
	09-Preferred-Duplicates
	10-Allowed-Harmony
	11-Chord-Succession
	12-Allowed-Interval-between-2-Parts
	13-Not-Allowed-Interval-between-2-Parts
	14-To-Be-Done
	15-Smaller-and-Bigger-Int-between-Parts
	16-Forbidden-Interval-Relation
	17-Not-N-Consecutive-Equal-Intervals
	18-Not-N-Same-Directions
	BPF-Delay

	03-Voice-Leading-Rules
	01-No-Crossing-Voice-Rule
	02-No-Open-Parallel-Rule
	03-Forbidden-Succession-Rule
	04-Hidden-Parallel-Rule

	04-Create-Expressions-Tools
	01-Create-Individual-Expression
	02-Create-Group-Expression
	03-Create-Face-Value-Expression
	04-Create-Expression-on-Note-Sequence
	05-Create-Expression-on-Chord-Sequence
	06-Create-Expression-on-Grace-Note-Sequence
	07-Create-Expression-on-Main-Beat
	08-Create-Expression-Not-on-Main-Beat
	09-Create-Expression-for-Beats
	10-Create-Expression-for-Measures

	0-Utils
	Utils
	01-Collect-Rules
	02-Collect-Script-Rules
	03-Make-?1-and-Make-I1
	04-Make-Candidates
	05-Mk-Chain-Candidates
	06-Make-Pitch-Candidates
	07-Logic-or-Condition
	08-Pitch-Extract-from-Score-Editor

	0-Examples
	01-Collect-Other-Rules
	Collect-Other-Rules-01
	Collect-Other-Rules-02
	Collect-Other-Rules-03

	02-Contrepoint
	Counterpoint
	Counterpoint-01
	Counterpoint-02
	Counterpoint-03
	Counterpoint-04
	Counterpoint-05
	Counterpoint-06
	Counterpoint-07
	Counterpoint-08
	Counterpoint-09
	Counterpoint-10

	03-Special-Combinations
	Always-3-Given-Elements-01
	Always-3-Given-Elements-02
	Always-3-Given-Elements-03

	Box Reference
	Box Index

