
Jacopo Baboni Schilingi

JBS-CMI

jbs-cmi
(v 1.0)

January 18, 2010

CONTENTS 1

Contents

1 Start-Here 3

2 0-Write-Music-Entities 3
2.1 0-Write-Entities . 3
2.2 1-Write-Music-Entity . 3
2.3 1-Write-Music-Entity . 5
2.4 2-Write-Grace-Note-Music-Entity . 6
2.5 1-Write-Grace-Note-Music-Entity . 8
2.6 3-Write-Grace-Note-Music-Entity . 9

3 0-Pitch 10
3.1 0-Pitch . 10
3.2 1-Harmonic-Fields . 10
3.3 2-Answer . 12

4 0-Matrix 12
4.1 0-Matrix . 12
4.2 0-Numeric-Comment . 13

4.2.1 1-Numeric-Comment . 13
4.2.2 2-Numeric-Comment-Sort . 14

4.3 0-Moving . 15
4.3.1 1-All-to-1 . 15
4.3.2 2-All-to-X . 15

4.4 0-Reading-Matrix . 16
4.4.1 1-All-Reading-Matrix . 16

4.5 0-Print-List-Matrix . 18
4.5.1 2-Print-Lists . 18
4.5.2 3-Print-Matrix . 18

5 0-Special-Combinations 19
5.1 0-Special-Combinations . 19
5.2 1-All-Possibilities . 19

5.2.1 1-All-Combinations . 19
5.2.2 2-All-Permutations . 20
5.2.3 3-All-Rotations . 21

5.3 2-Circular . 22
5.3.1 1-Circ-down-Picth . 22
5.3.2 2-Circ-up-Pitch . 23
5.3.3 3-Circular-Groups10 . 24

6 0-Grouping 26
6.1 0-Grouping . 26
6.2 1-Groups . 27

6.2.1 1-Group-List . 27

CONTENTS 2

6.2.2 2-Group-Equals . 27
6.2.3 3-All-Sub-Groups . 28
6.2.4 4-All-Given-Sub-Groups . 29
6.2.5 5-Grouping-Including-Given . 30
6.2.6 6-Grouping-excluding-Given . 31
6.2.7 7-All-Groups-by-All-Elements . 32
6.2.8 8-Mixing-List-Groups . 33

6.3 2-Segmentations . 34
6.3.1 1-Up-down-Peaks-Segmentation 34
6.3.2 2-On-New-or-on-Old-Segmentation 35
6.3.3 3-On-New-or-Old-on-New&Old-Segmentation 36

7 0-Utilities 37
7.1 0-Utils . 37
7.2 01-Depth . 37
7.3 02-Tree-Extract . 38
7.4 03-Member-in-Sublists? . 39
7.5 04-Circular-Reading . 40
7.6 05-First-N &-Last-N . 41
7.7 06-Complete-List . 42
7.8 07-Index-Subst . 43
7.9 08-Arithmetic-Serie-Stop . 44
7.10 09-Gold-Section . 45
7.11 10-Several-for-Max-Coll . 46
7.12 11-Find-All-Intervals . 47

A Box Reference 49

Box Index 72

1. START-HERE 3

1 Start-Here

This documentation has been written by Jacopo Baboni Schilingi and Julien Vincenot.
This is a library dedicated to useful and personal functions inside PWGL software.

(1) Write-entities

(2) Pitch

(3) Matrix

(4) Special-combinations

(5) Grouping

(6) Utilities

The name of this library derives from an old project of research called ’Composizione
per Modelli Interattivi’ that I started at the end of my studies in Milan, then continued
at Ircam and then at Tempo Reale.
This collection is not at all homogeneous. It is a personal library that collects many
functions in several domains.
It seems that in the computer aided composition community, these functions have been
quite used. That is why I decided to put them here. For those who are familiar with the
ancient CMI, you will find almost all the functions. I removed the chapter STRUCTURE
because, thanks to the developments in constraints domain done by Mikael Laurson, you
can find in JBS-Constraints library a whole set of rules conceived to calculate rhythmical
structures.
Many of these functions are related to the Hyper-Systemic theory. For those who might
be interested, please refer to ’La musique Hyper-Systemique’, Edition Mix. Paris 2007,
by Jacopo Baboni Schilingi.
In future, you can freely download the always last upgraded version on my web site
www.baboni-schilingi.com Please, if you find some bugs or anomalies, write directly to
me at jbs@baboni-schilingi.com

2 0-Write-Music-Entities

2.1 0-Write-Entities

This part of the library is devoted to two tools for writing inside the Score-Editor using
rhythm notation, pitch notation, grace note and expressions.

2.2 1-Write-Music-Entity

1.1 - WRITE-MUSIC-ENTITY
This function [1] allows you to write in a simple manner a rhythmical sequence (using
rhythm tree structures) synchronized with pitches and music expressions.

2.2 1-Write-Music-Entity 4

In [a] you set the rhythm tree structure. In this example we have (1 1 1 1), that means
that the measure will be divided in 4 equal pulses.
In [b] you set the corresponding pitches.
ATTENTION : If the number of pitches is smaller than the number of pulses, the last
pitch will be repeated in order to get the same length than pulses. If the number of
pulses is smaller than the number of pitches, the last pulse will be repeated to get the
same length than the pitches. Please use the two PWGL-SWITCHES [2] and [3] to
change either the number of pulses or the number of pitches.
In [c] you can define which music expression you want to be synchronized with
pulses and pitches. Syntactically the expressions have to be in parenthesis like this
(:mf) or (:accent), but also like this ((:accent :crescendo1) (:crescendo1) (:crescendo1)
(:crescendo1 :sf))
(Please read the PWGL Help and the 02-ENP-Constructor tutorial in order to learn how
many ENP expressions do exist.)
ATTENTION : If the number of expressions is smaller than the number of pulses or of
pitches the last expression will be repeated in order to get the same length of pitches.
PLEASE evaluate the Score-Editor [6] in order to see the possible results. Use also
the PWGL-SWITCH [4] and [5] in order to change the time signature (nominator and
divisor).

2.3 1-Write-Music-Entity 5

Score-Editor

E

&
1

44 œ>
œ#> œ#> œ>

q = 60

P1

score pitches rtms/times

enp-object-composer

score object/s

num-box

5

num-box

4

num-box

3

num-box

8

num-box

4

num-box

2

Chord-Editor

E

&
?

˙˙# ˙#˙

pitches

write-music-entity

jbs-cmi

rhythm pitches

note-expressions

value-box

(1 1 2)

(E)

a--->

(E)

<---b

(E)

<---c

11

4433

22

value-box

(1 1 1 1)

Chord-Editor

E

&
?

˙˙# ˙#

pitches

55

value-box

(:accent)

value-box

((:mp) (:f) (:mf))

value-box

((:accent :crescendo1) (:crescendo1) (:crescendo1) (:crescendo1 :sf)) Create-single-measure

A

Strcucture

Time-signature

list

argument

args

66

Figure 1: 1-1-write-music-entity

2.3 1-Write-Music-Entity

1.1.1 - WRITE-MUSIC-ENTITY
Here is a second example to study a little more this function [1]. As you know it allows
you to write in a simple manner a rhythmical sequence (using rhythm tree structures)
synchronized with pitches and music expressions.
Open the ’Pitch’ abstraction [a] and look how I generate some pitch sequences. These
sequences will define the rest of this example. (To understand it better, see also the
JBS-Profile tutorial 5.4).
In [b] I generate some pulses sequences. Open the ’Rhythm’ abstraction to understand
this better. (Please look also at the JBS-Constraints tutorial 1.07.02)
In [c] I set the time signature nominators.
In [d] I set the time signature divisors.
In the abstraction ’create-expressions’ [e] I generate two different expressions, accord-
ing to the kind of pitch intervals generated in [a]. If the interval between two notes is
bigger than a major third, then I ask for a slur, otherwise I ask for a staccato expression.
Please open it in order to understand how it works.

2.4 2-Write-Grace-Note-Music-Entity 6

The abstractions [2] and [3] are just ENP encoding for creating Score-Editor compatibil-
ity. I suggest you to study them in order to get more familiar with the ENP-Constructor.
Please evaluate the Score-Editor [4] in order to obtain some results.

Score-Editor

E

&
1

48 œ œ +# œ#
œjj

q = 60

44 œ œ .# . œ# œ#j 58 œ œ .# . œ œ# œ#jj
10

P1

score pitches rtms/times

Pitches

A

Rhythm

A

Pitches

Nominators
value-box

numerators

(4 4 5 5 6 6)

value-box

Divisors

(8 4 8 2 4 4)

write-music-entity

jbs-cmi

rhythm pitches

note-expressions

Create-single-measure

A

Structure

Numerator

Divisor

pwgl-enum

list

lists

lists

lists

lists

pwgl-map

enum patch

create-expressions

A

Create-measure-sequence

A

text-box

(E)

a--->

11

text-box

(E)

<---b

text-box

(E)

c--->

text-box

(E)

d--->

text-box

(E)

e--->

44

22

33

Figure 2: 1-1-1-write-music-entity

2.4 2-Write-Grace-Note-Music-Entity

1.2 - WRITE-GRACE-NOTE-MUSIC-ENTITY
(Sorry, not so elegant this one...)
This function [1] allows you to write in a simple manner a rhythmical sequence (using
rhythm tree structures) synchronized with pitches and music expressions and inserting
sequences of grace notes having music expressions for themselves.
In [a] you set the rhythm tree structure. Here we have (1 1 1 1), that means that the
measure will be divided in 4 equal pulses.
In [b] you set the corresponding pitches.
ATTENTION : If the number of pitches is smaller than the number of pulses, the last
pitch will be repeated in order to get the same length than pulses. If the number of
pulses is smaller than the number of pitches, the last pulse will be repeated to get the

2.4 2-Write-Grace-Note-Music-Entity 7

same length than the pitches. Please use the PWGL-SWITCH [2] to change the number
of pulses.
In [c] you can define which music expression you want to be synchronized with pulses
and pitches.
Syntactically the expressions have to be in parenthesis like this (:mf) or (:accent), but
also like this: ((:accent :crescendo1) (:crescendo1) (:crescendo1) (:crescendo1 :sf))
(Please see the PWGL Help and the 02-ENP-Constructor patch in order to learn how
many ENP expressions do exist.)
ATTENTION : If the number of expressions is smaller than the number of pulses or of
pitches, the last expression will be repeated in order to get the same length of pitches.
In [d] you can enter either a flat list of pitches (in this case it will be considered as a
single group of grace notes) or a list of lists of pitches (in this case each sublist will be
considered as a separate group of grace notes).
In [e] you have to define where the grace notes will be appended. If you put 0, that
means that the grace notes will appended to the nth 0 (the first) note you put in [a]. If
you put 1 it will be in the second place, 2 in the third and so on.
In [4] you can define the grace note single group or a list of groups.
PLEASE use the four PWGL-SWITCH [3], [4], [5] and [6]: - with [3] you can decide
single nth positions or groups of nth positions; - with [4] you can control if you have
a single group of grace note or groups (a LIST of LISTS) of grace notes; - with [5]
you can choose the NOTES expressions; - with [6] you can choose the GRACE-NOTES
expressions.
NOTE THIS: - In [3] if you put a single number and in [4] you have set a list of groups,
only the group corresponding to the nth in [3] will be chosen. - In [3] if you have
chosen a group of nth and in [4] you have set only a group of grace notes, only this last
one will be printed in the score in the first nth group set in [3].
- In [5] you have multiple choices (the behaviour for NOTE expressions). 1 - if you use
a single expression like (:fff) this one will be propagated to all notes; 2 - if you use a
flat list of expressions like (:sf :accent) the list will associate (:sf) to the first note, and
(:accent) for all other notes; 3 - if you use a single list of list like ((:sf :accent)) the
double expression (:sf :accent) will be propagated to all notes; 4 - if you use a list of
separate sub lists like ((:p) (:fermata :accent)) and the length of notes is bigger, the last
expression - in this case (:fermata :accent) - will be propagated till the last note; 5 - if
you use a list of separate sublists like ((:p) (:f) (:mf) (:fermata :accent)) and the number
of lists is equal to the length of notes, for each note you have a specific expression.
- In [6] you have multiple choices (the behaviour for GRACE-NOTE expressions)
ATTENTION : This behaviour is similar to NOTE expression but not exactly the same. 1
- if you use a single expression like (:fff) this one will be propagated to all grace-notes;
2 - if you use a single list of list like (:sf :accent) the double expression (:sf :accent)
will be propagated to all grace-notes; 4 - if you use a list of separate sublists like ((:mf)
(:accent :slur1)) and the length of notes is bigger than the length of expressions, the
whole group of expressions will be propagated till the last grace-note.
ATTENTION : If the length of the sub-group grace-notes is smaller than the list of ex-
pressions, the list will stop accordingly to the length of the grace-note sub-group.
ATTENTION TOO : If the length of a sub-group is bigger than the length of the expres-

2.5 1-Write-Grace-Note-Music-Entity 8

sion list, the last expression will be propagated to the last grace-note.
5 - if you use a list of separate sub-lists like ((:mf) (:accent) (:slur1 :crescendo1)
(:crescendo1) (:crescendo1 :ff)) and the number of lists is equal to the length of grace-
note list, for each grace-note you have a specific expression.

Score-Editor

E

&
1

48 œ
œ

œ œ# œ# œ# œ
q = 60

P1

score pitches rtms/times

Chord-Editor

E

&
?

w w# w# w

chord pitches

Chord-Editor

E

&
?

w
w w#

chord pitches11

(E)

<---b

(E)

a--->

33

(E)

<---f

write-grace-note-music-entity

jbs-cmi

rhythm pitches

note-expressionsgrace-notes

where? grace-note-expressionsnum-box

1

num-box

2

num-box

0

(E)

e--->

Chord-Editor

E

&
?

w

chordpitches

list

argument

args

args

args

Chord-Editor

E

&
?

w w w w w

chord pitches

Chord-Editor

E

&
?

w#

chordpitches

Create-single-measure

A

Struttura

4

8

value-box

(1 1 2)

22

value-box

(1 1 1 1)

value-box

(0 2)
value-box

(0 1 2 3)

44

55

66

77

(E)

c--->

(E)

<---d

first

value-box

(:fff)

value-box

((:p) (:f) (:mf) (:fermata :accent))

value-box

(:sf :accent)

value-box

((:sf :accent))

value-box

(:slur1)

value-box

((:mf) (:accent) (:slur1))

value-box

(:sf :accent)

first

value-box

((:p) (:fermata :accent))

value-box

((:mf) (:accent) (:slur1 :crescendo1) (:crescendo1) (:crescendo1 :ff))

Figure 3: 1-2-write-grace-note-music-entity

2.5 1-Write-Grace-Note-Music-Entity

1.2.1 - WRITE-GRACE-NOTE-MUSIC-ENTITY
Here is a second example to study a little more this function [1]. As you know it allows
you to write in a simple manner a rhythmical sequence (using rhythm tree structures)
synchronized with pitches and music expressions, using also grace-note groups with
expressions too.
Open the ’Pitch’ abstraction [a] and look how I generate some pitch sequences. These
sequences will define the rest of this example. (To better understand it, please see also
the JBS-Profile tutorial 5.4).
In [b] I generate pulses sequences. Open it to better understand it, and please look at
the JBS-Constraints tutorial 1.07.02.
In [c] I generate grace-note groups.

2.6 3-Write-Grace-Note-Music-Entity 9

In [d] I set the indexes to choose where to put the grace-note groups.
In [e] I set the time signature nominators.
In [f] I set the time signature divisors.
The abstractions [3] and [4] are just ENP encoding for creating Score-Editor compatibil-
ity. I suggest you to study them in order to get more familiar with the ENP-Constructor.
Please evaluate the Score-Editor [4] in order to obtain some results.

Score-Editor

E

&
1

58 œ . œ œ œ œ# œ œ#
œ +# œ#

œ
j 10

q = 60

54 ˙ + œ# œ œn œ œ# œ# œ
œ# œ .#

10

58 œ œ# œ . œ œn œ# œ œ œ œ# œ#jj
10

P1

score pitches rtms/times

pwgl-enum

list

lists

lists

lists

lists

lists

Pitch

A

Grace-notes

A

Rhythm

A

value-box

(1 2 3 2 1 2)

value-box

(5 5 5 5 5 5)

value-box

(8 4 8 2 4 4)

write-grace-note-music-entity

jbs-cmi

rhythm pitches

nil grace-notes

where? nil

Create-measure-sequence

A

Create-single-measure

A

Structure

Numerator

Divisor
pwgl-map

enum patch

(E)

a---> (E)

b--->

(E)

<---f

(E)

e--->

(E)

d--->

(E)

c--->

11

33

22

44

Figure 4: 1-2-1-write-grace-note-music-entity

2.6 3-Write-Grace-Note-Music-Entity

1.3 - WRITE-GRACE-NOTE-MUSIC-ENTITY
JUST ANOTHER COMPLETE EXAMPLE.
TRY TO STUDY IT.

3. 0-PITCH 10

Open it to see more

A

Figure 5: 1-3-write-grace-note-music-entity

3 0-Pitch

3.1 0-Pitch

This part of the library is devoted to two tools for controlling pitches.

3.2 1-Harmonic-Fields

2.1 - HARMONIC-FIELDS
This function [1] allows you to define as defvar variables some lists of chords and to
recall them in three different ways.
First you have to define a set of chords.
Here is an example:
(defvar major-triads ’((60 64 67) (61 65 68) (62 66 69) (63 67 70) (64 68 71) (65 69
72) (66 70 73) (67 71 74) (68 72 75) (69 73 76) (70 74 77) (71 75 78)))
and

3.2 1-Harmonic-Fields 11

(defvar my-clusters ’((60 61 62 63 64) (61 62 63 64 65) (62 63 64 65 66) (63 64 65 66
67) (64 65 66 67 68) (65 66 67 68 69) (66 67 68 69 70) (67 68 69 70 71) (68 69 70
71 72) (69 70 71 72 73) (70 71 72 73 74) (71 72 73 74 75)))
Please open the Lisp-code-box [2]. The two variables have been evaluated when the
patch was loaded, but you can modify and evaluate them again. To do it just select all
the text, then type command-shift-E.
In [a] I just recall the whole classes of chords with their 12 transpositions. Please use
the PWGL-SWITCH [3] and choose between the two classes of chords.
In [b] I set one class, the major triads, with a specific transposition value. This value
belongs to the modulo 12 pitch result.
In [c] I set a specific order to recall some transpositions of the two classes of chords.
ATTENTION: I have already classified a lot of harmonic fields inside this library. These
chords derive from E. Carter, I. Fedele, B. Ferneyhough, K. Stockhausen and myself. In
order to know them, it is sufficient to read the doc of HARMONIC-FIELDS [1] inside a
patch in PWGL.

(Lisp)

Open-this-lisp-code-box

Chord-Editor

E

&
?

w w# w#

chord pitches

harmonic-fields

jbs-cmi

(major-triads 11)

Chord-Editor

E1/12

&
?

w w# w w# w

chord pitches

harmonic-fields

jbs-cmi

field

Chord-Editor

E1/4

&
?

w w# w#

chord pitches

harmonic-fields

jbs-cmi

((major-triads 11) (my-clusters 1) (major-triads 2) (my-clusters 7))

(E)

a--->

11
(E)

b--->

(E)

c--->

33

value-box

major-triads

value-box

my-clusters

22

Figure 6: 2-1-harmonic-fields

3.3 2-Answer 12

3.3 2-Answer

2.2 - ANSWER
This function [1] is a simplified reproduction of the tonal answer of the fugue.
In [a] you put a melodic profile.
In [b] you define (as nth index) which note of the profile has to be considered as the
dominant.
When you evaluate the ANSWER all the notes of the profile are transposed to the dom-
inant, except the dominant, that is transposed on the tonic.

answer

jbs-cmi

subject 1

Chord-Editor

E

&
?

w w w# w

chord pitches

Chord-Editor

E

&
?

w w w# w

chord pitches

11

(E)

<---b

(E)

a--->

Figure 7: 2-2-answer

4 0-Matrix

4.1 0-Matrix

This part of the JBS-CMI library is devoted to the manipulation of matrices. By matrix
I mean a list of lists of elements distributed in columns and rows. This distribution
belongs to a given logic or tactic.

4.2 0-Numeric-Comment 13

4.2 0-Numeric-Comment

4.2.1 1-Numeric-Comment

3.1.1 - NUMERIC-COMMENT
(Also know as Look-and-say sequence by John Horton Conway)
This function [1] reproduces the Look-and-say sequence as shown.
Put 1 in [a] and choose which level of recursion you want to use with [b].
To generate a member of the sequence from the previous member, read off the digits of
the previous member, counting the number of digits in groups of the same digit.
For example:
1 is read off as ’one 1’ or 11. 11 is read off as ’two 1’s’ or 21. 21 is read off as ’one
2, then one 1’ or 1211. 1211 is read off as ’one 1, then one 2, then two 1’ or 111221.
111221 is read off as ’three 1, then two 2, then one 1’ or 312211.
In [c] I set a arithmetic series going from 1 to 10. Please evaluate the PRINT-LIST [2]
in order to see the result.

11

(E)

<---b

numeric-comment

jbs-cmi

list 1

value-box

(1)

22

(E)

<---c

numeric-comment

jbs-cmi

list gr

pwgl-enum

(1_10)

pwgl-map

enum patch

value-box

(1)

print-lists

jbs-cmi

list

(E)

a--->

11

Figure 8: 3-1-1-numeric-comment

4.2 0-Numeric-Comment 14

4.2.2 2-Numeric-Comment-Sort

3.1.2 - NUMERIC-COMMENT-SORT
This is a variation of the Look-and-say sequence by John Horton Conway.
Put 1 in [a] and choose which level of recursion you want to use with [b].
To generate a member of the sequence from the previous member, read off the digits of
the previous member, counting the number of digits in groups of the same digit., BUT
STARTING ALWAYS FROM THE SUM OF MORE LITTLE NUMBER TO THE BIGGER
ONE.
1 is read off as ’one 1’ or 11. 11 is read off as ’two 1’ or 21. NOW SEE THE DIFFERENCE
21 is read off STARTING FROM THE MORE LITTLE NUMBER THAT IS 1 SO ’ one 1’ then
’one 2’ or 1112. THEN AGAIN STARTING FROM THE MORE LITTLE : 1112 is read off
as ’three 1’, then ’one 2’ or 3112. THEN AGAIN STARTING FROM THE MORE LITTLE :
3112 is read off as ’two 1’, then ’one 2’, then ’one 3’ or 211213. THEN AGAIN STARTING
FROM THE MORE LITTLE : 211213 is read off as ’three 1’, then ’two 2’, then ’two 3’ or
312213. And so on.
A special property: After a while all sequences become the comment of themselves. Try
to make the comment of this one : 2 1 3 2 2 3 1 4.

11

(E)

<---b

value-box

(1)

22

(E)

<---c

pwgl-enum

(1_20)

pwgl-map

enum patch

value-box

(11 13)

print-lists

jbs-cmi

list

(E)

a--->

11numeric-comment-sort

jbs-cmi

list 14
numeric-comment-sort

jbs-cmi

list gr

Figure 9: 3-1-2-numeric-comment-sort

4.3 0-Moving 15

4.3 0-Moving

4.3.1 1-All-to-1

3.2.1 - ALL-TO-ONE
This function [1] creates a linear interpolation between a list of numbers set in [a] and
the number 1. When a number of the given list reaches 1, then it disappears.
If you put (10 7 5 2) as starting list, the result will be :
—> 10 7 5 2 —> 9 6 4 1 —> 8 5 3 —> 7 4 2 —> 6 3 1 —> 5 2 —> 4 1 —> 3 —> 2
—> 1
Please evaluate the PRINT-LIST [2] in order to see the result.
(This is an old function from Brian Ferneyhough.)

11

22
print-lists

jbs-cmi

list

(E)

a--->

all-to-one

jbs-cmi

(10 5 2)

Figure 10: 3-2-1-all-to-1

4.3.2 2-All-to-X

3.2.2 - ALL-TO-X
This function [1] creates a linear interpolation between a list of numbers set in [a] and
the number set in [b]. When a number of the given list reaches the value set in [b],
then it disappears.

4.4 0-Reading-Matrix 16

If you put (20 7 1) as starting list, the result will be :
—> 20 7 1 —> 19 8 2 —> 18 9 3 —> 17 10 4 —> 16 5 —> 15 6 —> 14 7 —> 13 8
—> 12 9 —> 11 10 —> 10
Please evaluate the PRINT-LIST [2] in order to see the result.

11

22
print-lists

jbs-cmi

list

(E)

a--->

all-to-x

jbs-cmi

(20 7 1) 10

(E)

<---b

Figure 11: 3-2-2-all-to-x

4.4 0-Reading-Matrix

4.4.1 1-All-Reading-Matrix

3.3.1 - ALL-READING-MATRIX
This patch shows you all possible way of reading a matrix.
Please use the PWGL-SWITCH to choose which function you want to use, and evaluate
the PRINT-MATRIX [2] in order to see the result.
Here is a very simple matrix :
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here are the results for each function in this patch: - RIGHT-DOWN-DIAGONAL-
READING-MATRIX —> 1 —> 22 —> 333

4.4 0-Reading-Matrix 17

- LEFT-UP-DIAGONAL-READING-MATRIX —> 333 —> 22 —> 1
- RIGHT-UP-DIAGONAL-READING-MATRIX —> 3 —> 22 —> 111
- LEFT-DOWN-DIAGONAL-READING-MATRIX —> 111 —> 22 —> 3
- DOWN-LEFT-DOWN-READING-MATRIX —> 1 —> 11 2 —> 111 22 3 —> 222 33
—> 333
- UP-RIGHT-UP-READING-MATRIX —> 333 —> 33 222 —> 3 22 111 —> 2 11 —> 1
- UP-LEFT-DOWN-READING-MATRIX —> 333 —> 222 33 —> 111 22 3 —> 11 2 —>
1
- DOWN-RIGHT-UP-READING-MATRIX —> 1 —> 2 11 —> 3 22 111 —> 33 222 —>
333
- ORDER-READING-MATRIX —> 1 11 111 —> 2 22 222 —> 3 33 333
- REVERSE-READING-MATRIX —> 3 33 333 —> 2 22 222 —> 1 11 111
- REVERSED-ORDER-READING-MATRIX —> 111 11 1 —> 222 22 2 —> 333 33 3
- REVERSED-ORDER-REVERSE-READING-MATRIX —> 333 33 3 —> 222 22 2 —>
111 11 1

11

22(E)

a--->

value-box

((1 11 111) (2 22 222) (3 33 333))

right-up-diagonal-reading-matrix

jbs-cmi

list

right-down-diagonal-reading-matrix

jbs-cmi

list

left-up-diagonal-reading-matrix

jbs-cmi

list

left-down-diagonal-reading-matrix

jbs-cmi

list

order-reading-matrix

jbs-cmi

list

reverse-reading-matrix

jbs-cmi

list

reversed-order-reading-matrix

jbs-cmi

list

print-matrix

jbs-cmi

list

down-left-down-reading-matrix

jbs-cmi

list

up-right-up-reading-matrix

jbs-cmi

list

up-left-down-reading-matrix

jbs-cmi

list

down-right-up-reading-matrix

jbs-cmi

list

reversed-order-reverse-reading-matrix

jbs-cmi

list

Figure 12: 3-3-1-all-reading-matrix

4.5 0-Print-List-Matrix 18

4.5 0-Print-List-Matrix

4.5.1 2-Print-Lists

3.3.2 - PRINT-LISTS
This function [1] is just a tool to print a list of lists in a more readable way.

11

value-box

((1 11 111) (2 22 222) (3 33 333))

print-lists

jbs-cmi

list

Figure 13: 3-3-2-print-lists

4.5.2 3-Print-Matrix

3.3.3 - PRINT-MATRIX
This function [1] is just a tool to print a list of lists in a matrix readable format.

5. 0-SPECIAL-COMBINATIONS 19

11

value-box

((1 11 111) (2 22 222) (3 33 333))

print-matrix

jbs-cmi

list

Figure 14: 3-3-3-print-matrix

5 0-Special-Combinations

5.1 0-Special-Combinations

This part of the library groups together some useful functions to generate every possi-
bilities for some given operations on a list and also some special combinatorial cases.

5.2 1-All-Possibilities

5.2.1 1-All-Combinations

4.1.1 - ALL-COMBINATIONS
A function from the old PatchWork. It creates all combinations, with elements from the
given list in ’vals’, and with a length set in ’n’.

5.2 1-All-Possibilities 20

all-combinations

jbs-cmi

(1 2 3 4) 3

Figure 15: 4-1-1-all-combinations

5.2.2 2-All-Permutations

4.1.2 - ALL-PERMUTATIONS
A function from the old PatchWork. It creates all permutations with elements from a
given list.

5.2 1-All-Possibilities 21

all-permutations

jbs-cmi

(1 2 3)

Figure 16: 4-1-2-all-permutations

5.2.3 3-All-Rotations

4.1.3 - ALL-ROTATIONS
This function gives all the circular permutations of a given list.

5.3 2-Circular 22

all-rotations

jbs-cmi

(1 2 3 4)

Figure 17: 4-1-3-all-rotations

5.3 2-Circular

5.3.1 1-Circ-down-Picth

4.2.1 - CIRC-DOWN-PITCH
This function [1] concerns pitches. It creates all circular permutations of a given list of
pitches.
The specificity of this function is that each permutation is transposed on a LOWER
octave from the preceding one.

5.3 2-Circular 23

circ-down-pitch

jbs-cmi

(84 91 89 87 85)

Chord-Editor

E1/5

&
?

w w w w# w#

chord pitches

11

Figure 18: 4-2-1-circ-down-picth

5.3.2 2-Circ-up-Pitch

4.2.2 - CIRC-UP-PITCH
This function [1] concerns pitches. It creates all circular permutations of a given list of
pitches.
The specificity of this function is that each permutation is transposed on a UPPER octave
from the preceding one.

5.3 2-Circular 24

Chord-Editor

E1/5

&
? w w w w# w#

chord pitches

11
circ-up-pitch

jbs-cmi

(36 43 41 39 37)

Figure 19: 4-2-2-circ-up-pitch

5.3.3 3-Circular-Groups10

4.2.3 - CIRCULAR-GROUPS10
This function [1] creates circular permutations between at maximum 10 groups.
In the ten list inputs [a] (list1, list2, list3, etc. list10) you can define the different
elements. If the corresponding menu [b] (group1, group2, group3, etc. group10) is
set on ’fix-val?’, it means that the group will be repeated several times. If it is set on
’permut-val?’, that means that the group will have all its circular permutations.
As the lists can have different lengths (as it is in this example), the number of repetitions
of a group (if the corresponding menu is ’fix-val?’) depends on the longest list of all the
groups.
The same is for the circular permutations. The number of circular permutations of a
given group is repeated in order to get the length of the longest group treatment.
If the menu ’global-permut?’ [c] is set on ’fix-val?’, that means that the treatment of
each list stays in the exact order following the numeration of the lists.
If the menu ’global-permut?’ [c] is set on ’permut-val?’, that means that all the treat-
ments of all the lists are permutated in a circular way.
Now please open the red abstraction.

5.3 2-Circular 25

Here there are only three lists in order to make this function more readable : - 1 11 111
1111 - 2 22 222 - a b c d e f g h
All the three menus [b1, b2 and b3] are set on ’fix-val?’.
Evaluate the PRINT-LISTS box [2] and the result is: —> (1 11 111 1111) (2 22 222)
(A B C D E F G H) —> (1 11 111 1111) (2 22 222) (A B C D E F G H) —> (1 11 111
1111) (2 22 222) (A B C D E F G H) —> (1 11 111 1111) (2 22 222) (A B C D E F G
H) —> (1 11 111 1111) (2 22 222) (A B C D E F G H) —> (1 11 111 1111) (2 22 222)
(A B C D E F G H) —> (1 11 111 1111) (2 22 222) (A B C D E F G H) —> (1 11 111
1111) (2 22 222) (A B C D E F G H)
As you see, the number of repetitions of all the list is synchronized on the longest one
(a b c d e f g h).
Please set the menu b1 on ’permut-val?’. Now the result is:
—> (1 11 111 1111) (2 22 222) (A B C D E F G H) —> (11 111 1111 1) (2 22 222)
(A B C D E F G H) —> (111 1111 1 11) (2 22 222) (A B C D E F G H) —> (1111 1 11
111) (2 22 222) (A B C D E F G H) —> (1 11 111 1111) (2 22 222) (A B C D E F G H)
—> (11 111 1111 1) (2 22 222) (A B C D E F G H) —> (111 1111 1 11) (2 22 222) (A
B C D E F G H) —> (1111 1 11 111) (2 22 222) (A B C D E F G H)
As you can see, the number of circular permutations of the list (1 11 111) is not 3, but
it depends again on the longest list (a b c d e f g h).
Now set the three menus (b1, b2 and B3) on ’permut-val?’. Now the result is :
—> (1 11 111 1111) (2 22 222) (A B C D E F G H) —> (11 111 1111 1) (22 222 2)
(B C D E F G H A) —> (111 1111 1 11) (222 2 22) (C D E F G H A B) —> (1111 1 11
111) (2 22 222) (D E F G H A B C) —> (1 11 111 1111) (22 222 2) (E F G H A B C D)
—> (11 111 1111 1) (222 2 22) (F G H A B C D E) —> (111 1111 1 11) (2 22 222)
(G H A B C D E F) —> (1111 1 11 111) (22 222 2) (H A B C D E F G)
All the list have been permutated circularly, till when the longest one (a b c d e f g h)
has finished.
Now set the menu [c] ’global-permut?’ on ’permut-val?’. The result is too long to be
printed here, so, please look in the PWGL OUTPUT window.

6. 0-GROUPING 26

Open it to better understand

A

circular-groups10

jbs-cmi

list1 fix-val?

list2 fix-val?

list3 fix-val?

list4 fix-val?

list5 fix-val?

list6 fix-val?

list7 fix-val?

list8 fix-val?

list9 fix-val?

list10 fix-val?

fix-val?

value-box

(1)

value-box

(2 22)

value-box

(3 33 333)

value-box

(4 44 444 4444)

value-box

(5 55 555 5555 55555)

value-box

(a)

value-box

(b bb)

value-box

(c cc ccc)

value-box

(d dd ddd dddd)

value-box

(e ee eee eeee eeeee)

print-lists

jbs-cmi

list

11

(E)

<---b

(E)

a--->

(E)

c--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

a--->

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

(E)

<---b

22

Figure 20: 4-2-3-circular-groups10

6 0-Grouping

6.1 0-Grouping

By grouping I mean a general concept based on the act or process of uniting elements
into groups following a given criterion. This part of the library is divided in GROUPS
and SEGMENTATIONS.
In GROUPS I put all the possible logical criteria I found, based on sets definition.
In SEGMENTATIONS I put some (not all) criteria developed by the theory of Morpholo-
gie (see also the library Morphologie) using the concept of new/old parameter.
If you do not know this theory, please look at the Paolo Aralla paper in PRISMA-01, Mi-
lan, 2003, Analisi morfologica - Un modello matematico per descrivere la relazione fra
struttura morfologica del messaggio, attivit mnemonico-percettiva e risposta psichica.

6.2 1-Groups 27

6.2 1-Groups

6.2.1 1-Group-List

5.1.1 - GROUP-LIST
This function [1] can group a given list [a] into several groups with lengths specified in
[b].
With the menu [c] you can: - stop - choose to finish the grouping action when the
starting list arrives at its end; - circ - choose to continue to read the list in a circular way
till when all the groups lengths have been used; - scale - choose to rescale proportionally
the lengths of the subgroups in order to fit exactly in the length of the original list.

group-list

jbs-cmi

list groups

stop

group-list

jbs-cmi

list groups

circ

group-list

jbs-cmi

list groups

scale

value-box

(a b c d e f g h i l m n o)

value-box

(3 4 5 4 7 6)

11

(E)

a--->

(E)

b--->

(E)

c--->

Figure 21: 5-1-1-group-list

6.2.2 2-Group-Equals

5.2 - GROUP-EQUALS
This function [1] groups every consecutive identical elements.

6.2 1-Groups 28

11
group-equals

jbs-cmi

(a b b b c c c c a a a b b b b d d d)

Figure 22: 5-1-2-group-equals

6.2.3 3-All-Sub-Groups

5.3 - ALL-SUB-GROUPS
This function [1] outputs all the possible subgroups of a given list.

6.2 1-Groups 29

11
all-sub-groups

jbs-cmi

(a b c d e f g)

Figure 23: 5-1-3-all-sub-groups

6.2.4 4-All-Given-Sub-Groups

5.1.4 - ALL-GIVEN-SUB-GROUPS
This function [1] outputs all subgroups of a given list [a]. The subgroups lengths are
set in [b].
For instance: If you put in [b] the atom 3, you will get only subgroups of length 3; if
you put the atom 5 only the subgroups of length 5, etc.
But if [2] you put a list [c] like (1 5), you will get all the subgroups of length 1, 2, 3, 4
and 5.
ATTENTION: if you do not put the lengths in the ’sort’ order, you get nil. So, look at
PWGL-MAP [3, the red boxes] in order to see how to generate several subgroups with
not linear lengths.

6.2 1-Groups 30

11

(E)

a--->

(E)

<---b

all-given-sub-groups

jbs-cmi

(1 2 3 4 5) 3

(E)

<---c

all-given-sub-groups

jbs-cmi

(1 2 3 4 5) (1 5)

all-given-sub-groups

jbs-cmi

(1 2 3 4 5) n

pwgl-enum

(3 2 1)

pwgl-map

enum patch

22

33

Figure 24: 5-1-4-all-given-sub-groups

6.2.5 5-Grouping-Including-Given

5.1.5 - GROUPING-INCLUDING-GIVEN-ELEMENT
This function [1] groups a given list [a] into new subgroups beginning with the given
element set in [b]. In other words, every subgroups will start with the element set in
[a].
ATTENTION : If the list does not start with the element set in [b], the first subgroup will
not contain this element. Please use the PWGL-SWITCH [2] and choose which list you
want to group and look at the result.

6.2 1-Groups 31

11

(E)

a--->

(E)

<---b

grouping-including-given-element

jbs-cmi

list a

value-box

(a b c a b c d e a b c d e f a a a z a)

value-box

(b c a b c d e a b c d e f a a a z a)

22

Figure 25: 5-1-5-grouping-including-given

6.2.6 6-Grouping-excluding-Given

5.1.6 - GROUPING-EXCLUDING-GIVEN-ELEMENT
This function [1] groups a given list [a] into new subgroups, isolating the given element
set in [b] from any other elements. In other words, every subgroups will contain either
the unique element set in [a], or groups of other elements.

6.2 1-Groups 32

11

(E)

a--->

(E)

<---b

value-box

(a b c a b c d e a b c d e f a a a z a)

grouping-excluding-given-element

jbs-cmi

list a

Figure 26: 5-1-6-grouping-excluding-given

6.2.7 7-All-Groups-by-All-Elements

5.1.7 - ALL-GROUPS-BY-ALL-ELEMENTS
This function [1] creates all sublists accordingly to every elements of the given list [a].
With the menu ’included?’ [b] you can choose with ’yes’ to include the element of the
segmentation inside each sublist. With ’no’ you can choose to exclude the element of
the segmentation and to put it into a separate sublist.

6.2 1-Groups 33

11

(E)

a--->

(E)

<---b

value-box

(a b c a b c d e a b c d e f a a a z a)

all-groups-by-all-elements

jbs-cmi

list :no!

Figure 27: 5-1-7-all-groups-by-all-elements

6.2.8 8-Mixing-List-Groups

5.1.8 - CHAINING-GROUPS
This function [1] creates chained subgroups.
In [a] you put the list you want to chain, and in [b] you define the lengths of the
subgroups.
In [c] you put how many last elements have to be in common between a group and its
follower. For instance if you put (1 1 1) between the first group and the second there
will be 1 common last element, the same between the second and the third, and the
same too between the third and the fourth. But if you put (1 4 2), that means that
between the first and the second group there will be 1 last common element; between
the second and the third there will be 4 last common elements; between the third and
the fourth there will be 2 last common elements.

6.3 2-Segmentations 34

11

(E)

a--->

(E)

<---b

value-box

(a b c d e f g h i l m n o)

(E)

c--->

value-box

(1 1 1)

value-box

(1 4 2)

chaining-groups

jbs-cmi

elements (3 4 5 6)

last-elmts

Figure 28: 5-1-8-mixing-list-groups

6.3 2-Segmentations

6.3.1 1-Up-down-Peaks-Segmentation

5.2.1 - MAXIMUM-MINIMUM-SEGMENTATIONS
(To better understand these two functions, please look also in mathematics, maxima
and minima, known collectively as extrema.)
The function MAXIMUM-SEGMENTATION [1] creates a segmentation based on the
primitive forms of a given list of numbers.
ATTENTION : This function works only with numbers (not with symbols). It creates a
separate group of lists segmented before and after a point of maximum.
The function MINIMUM-SEGMENTATION [2] creates a segmentation based on the prim-
itive forms of a given list of numbers.
ATTENTION : This function too works only with numbers. It creates a separate group
of lists segmented before and after a point of minimum.

6.3 2-Segmentations 35

11

22
minimum-segmentation

jbs-cmi

(1 2 3 2 3 4 1 2 3 4 5 4)

maximum-segmentation

jbs-cmi

(1 2 3 2 3 4 1 2 3 4 5 4)

Figure 29: 5-2-1-up-down-peaks-segmentation

6.3.2 2-On-New-or-on-Old-Segmentation

5.2.2 - ON-NEW-OLD-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)
The ON-NEW-SEGMENTATION [1] creates a group on each NEW incoming element. To
create this segmentation, it creates a group excluding the NEW element and another
group including it.
The ON-OLD-SEGMNTATION [2] creates a group on each OLD element appearing in
the given list.

6.3 2-Segmentations 36

11

22

on-new-segmnetation

jbs-cmi

(a b c d a b c d e g f)

on-old-segmnetation

jbs-cmi

(a b c d a b c d e g f)

Figure 30: 5-2-2-on-new-or-on-old-segmentation

6.3.3 3-On-New-or-Old-on-New&Old-Segmentation

5.2.3 - ON-NEW-OR-OLD-NEW/OLD-ANALYSIS-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)
The ON-NEW/NEW-OLD-ANALYSIS-SEGMENTATION [1] creates a new group on each
NEW element coming out of the NEW-OLD-ANALYSIS of the given list.
The ON-OLD/NEW-OLD-ANALYSIS-SEGMENTATION [1] creates a new group on each
OLD element coming out of the NEW-OLD-ANALYSIS of the given list.

7. 0-UTILITIES 37

on-old/new-old/analysis-segmentation

jbs-cmi

(a b c d a b c d e g f)

11

22

on-new/new-old/analysis-segmentation

jbs-cmi

(a b c d a b c d e g f)

Figure 31: 5-2-3-on-new-or-old-on-new-old-segmentation

7 0-Utilities

7.1 0-Utils

Just some useful functions.

7.2 01-Depth

6.1 - DEPTH
This function [1] outputs each element of a given list with the corresponding level of
nesting.

7.3 02-Tree-Extract 38

depth

jbs-cmi

(a (b (c) d) e)

11

Figure 32: 6-01-depth

7.3 02-Tree-Extract

6.2 - TREE-EXTRACT
This function is a sort a recursive nth.
In [a] you put a list of lists, and in [b] you define the nth of the nth. For instance if you
put (1 1), that means that you want to extract the second (nth 1) of the second (nth1).

7.4 03-Member-in-Sublists? 39

tree-extract

jbs-cmi

structure (1 1)

value-box

(1 (2 (3 (4 5 6) 7) 8) 9)

(E)

a--->

11

(E)

<---b

Figure 33: 6-02-tree-extract

7.4 03-Member-in-Sublists?

6.3 - MEMBER-IN-SUBLISTS
This function [1] is a sort of general member test. It outputs T or NIL.
In [a] you put the element you want to be checked as included or excluded.
In [b] you put a list where to check if the item set in [a] is found or not.
With the menu MODE you can choose between four different tests: - with EVERY this
function puts T if the element set in [a] is in all sublists; - with SOME or NOTEVERY
this function puts T if the element set in [a] is in certain sublists; - with NOTANY this
function puts T if the element set in [a] is NOT in any sublists.
Please use the PWGL-SWITCH [2] in order to test several items.

7.5 04-Circular-Reading 40

member-in-sublists?

jbs-cmi

item-or-items lists

EVERY

value-box

((a b c d q) (b c d e m) (f g h i c w) (t r c b))

value-box

(b c)

(E)

a--->

11

(E)

<---b

(E)

c--->

value-box

(x)

value-box

(c)
22

Figure 34: 6-03-member-in-sublists?

7.5 04-Circular-Reading

6.04 - CIRCULAR-LIST-READING
This function [1] allows you to synchronize the lengths of two lists.
If the lists set in [a] and [b] have the same length, it outputs the list set in [a].
If the length of [a] is smaller than the length of [b], it reads [a] in a circular way till
when the two lengths are equal.
If the length of [b] is smaller than the length of [a], it reads [b] in a circular way till
when the two lengths are equal.

7.6 05-First-N &-Last-N 41

(E)

a--->

11

(E)

<---b

circular-lists-reading

jbs-cmi

list-1 list-2

value-box

(1 2 3 4 5 6 7 8 9)

value-box

(1 2 3)

value-box

(a b c d e f g h i)

value-box

(a b c)

Figure 35: 6-04-circular-reading

7.6 05-First-N &-Last-N

6.05 - FIRST-OR-LAST-N
These two functions take the first elements [1] of a given list or the last [2] ones.
In [a] you put a list, and in [b] you define how many first or last elements you want.

7.7 06-Complete-List 42

(E)

a--->

11

(E)

<---b

22

first-n

jbs-cmi

(1 2 3) 2

last-n

jbs-cmi

(1 2 3) 2

(E)

a--->

(E)

<---b

Figure 36: 6-05-first-n-last-n

7.7 06-Complete-List

6.06 - COMPLETE-LIST
This function [1] looks if the length of the left input is equal to the number put in the
right one.
If the length is smaller, the function will repeat the last element of the list till when the
length is equal to the number set in the right input.

7.8 07-Index-Subst 43

11
complete-list

jbs-cmi

(1 2 3) 7

Figure 37: 6-06-complete-list

7.8 07-Index-Subst

6.07 - INDEX-SUBSTITUTE
This function [1] allows you to replace a list of elements giving the nth positions.
In [a] you put a list.
In [b] you define where you want to make a substitution. The values here correspond
to nth indexes : 0 is the index for the first element, 1 for the second, 2 for the third, and
so on.
In [c] you put the elements that will be put in the given nth indexes set in [b].

7.9 08-Arithmetic-Serie-Stop 44

11

(E)

c---> (E)

a--->

(E)

<---b

index-substitute

jbs-cmi

(a b c d e f g) (2 4)

(100 200)

Figure 38: 6-07-index-subst

7.9 08-Arithmetic-Serie-Stop

6.08 - ARITHMETIC-SER-STOP
This function [1] creates an arithmetic series.
In [a] you set the starting point.
In [b] you set the step.
In [c] you define how many steps you want.

7.10 09-Gold-Section 45

(E)

a--->

(E)

<---b

(E)

c--->

11
arithm-ser-stop

jbs-cmi

1 10

3

Figure 39: 6-08-arithmetic-serie-stop

7.10 09-Gold-Section

6.09 - GOLD-SECTION-MULTIPLICATION
This function [1] creates a multiplication by the gold section value (0.618). It is a
function that can be recalled recursively.
In [a] you define a number you want to multiplied by the gold section factor.
In [b] you can define which level of the recursion you want. With 1 you call the function
just one time; with 2 you apply the multiplication on the first result; with 3 you apply
the multiplication on the second result that is the multiplication of the first one, and so
on.

7.11 10-Several-for-Max-Coll 46

(E)

a--->

11

(E)

<---b

gold-section-multiplication

jbs-cmi

312 1

Figure 40: 6-09-gold-section

7.11 10-Several-for-Max-Coll

6.10 - SEVERAL-FOR-MAX-COLL
These 3 functions are just useful to sort a list or a list of lists in the text format of the
coll object in MaxMSP and PureData environments.
FOR-MAX-COLL [1]
This function prepares a list like this one ((1 2 3) (a b c) (100 200 300)) in this format
:
1, 1 2 3; 2, A B C; 3, 100 200 300;
FOR-MAX-SPECIAL-COLL [2]
This function prepares two lists, this one ((1 2 3) (a b c) (100 200 300)) and this one
((5 6 7) (d e f) (11 22 33)), in the following format:
(1 2 3), (5 6 7); (A B C), (D E F); (100 200 300), (11 22 33);
FOR-MAX-COLLECT-NAME-AND-INDEX [3]
This function prepares one list like this one (start start start) in the following format:
START1; START2; START3;
ATTENTION: With the input ’format?’ [b] you can choose either to print the result in
the PWGL output [to-listener], or to create a new file through a dialog box [to-file].

7.12 11-Find-All-Intervals 47

TO IMPORT IN MAX: If you create a file, you can open it directly in Max like any COLL
text file.
ATTENTION 2: these two functions [2, 3] are not so easily usable directly in Max...
Why? Why not!

(E)

a--->

22

(E)

<---b

for-max-coll

jbs-cmi

((1 2 3) (a b c) (100 200 300)) to-file

for-max-special-coll

jbs-cmi

((1 2 3) (a b c) (100 200 300)) ((5 6 7) (d e f) (11 22 33))

to-listener

for-max-collect-name-and-index

jbs-cmi

(start start start) (1 2 3)

to-listener

(E)

<---d

(E)

c--->

(E)

b--->

(E)

e--->

(E)

b---> (E)

<---f

11

33

Figure 41: 6-10-several-for-max-coll

7.12 11-Find-All-Intervals

6.11 - FIND-ALL-INTERVALS
This function [1] comes from Brian Ferneyhough’s old PatchWork Library.
It calculates all the melodic intervals of a given list of pitches.

7.12 11-Find-All-Intervals 48

11
find-all-intervals

jbs-cmi

chord

Chord-Editor

E

&
?

w w# w# w

chord pitches

Figure 42: 6-11-find-all-intervals

A. BOX REFERENCE 49

A Box Reference

all-combinations

arglist: (vals n)

package: JBS-CMI
menu: Special-CombinationsIAll-Possibilities
4.1.1 - ALL-COMBINATIONS
From old PatchWork: it creates all combinations of the given list in vals with a length
set in n.

all-given-sub-groups

arglist: (list1 n)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.4 - ALL-GIVEN-SUB-GROUPS
This function outputs all sub groups of a given list [list1]. The subgroups length is set
in [n]. For instance: If you put in [n] the atom 3, you will get only subgroups of length
3; if you put the atom 5 only the subgroups of length 5. But if you put a list like (2 4),
you will get all the subgroups of length 2, 3 and 4.

all-groups-by-all-elements

arglist: (list included?)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.7 - ALL-GROUPS-BY-ALL-ELEMENTS
This function creates all sub lists accordingly to all elements of the given list [list].
With the menu INCLUDED? you can choose with YES to include the element of the
segmentation inside each sub list; with NO! you can choose to exclude the element of
the segmentation and to put into a separate sub list.

all-permutations

arglist: (list)
package: JBS-CMI
menu: Special-CombinationsIAll-Possibilities
4.1.2 - ALL-PERMUTATIONS
From old PatchWork: it creates all permutations of the given list.

all-rotations

arglist: (list)
package: JBS-CMI

A. BOX REFERENCE 50

menu: Special-CombinationsIAll-Possibilities
4.1.3 - ALL-ROTATIONS
It gives all the circular permutations of a given list.

all-sub-groups

arglist: (list)
package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.3 - ALL-SUB-GROUPS
This function outputs all the possible sub groups of a given list.

all-to-one

arglist: (list)
package: JBS-CMI
menu: Numeric-CommentIMoving
3.2.1 - ALL-TO-ONE (This is an old B. Ferneyhough function)
This function creates a linear interpolation between a list of numbers set in [list] and
the number 1. When a number of the given list reaches 1, then it disappears.
I you put (10 7 5 2) as starting list. The result will be.
—> 10 7 5 2 —> 9 6 4 1 —> 8 5 3 —> 7 4 2 —> 6 3 1 —> 5 2 —> 4 1 —> 3 —> 2
—> 1

all-to-x

arglist: (list x)

package: JBS-CMI
menu: Numeric-CommentIMoving
3.2.2 - ALL-TO-X
This function creates a linear interpolation between a list of numbers set in [list] and
the number set in [x]. When a number of the given list reaches the value set in [x],
then it disappears.
I you put (20 7 1) as starting list. The result will be.
—> 20 7 1 —> 19 8 2 —> 18 9 3 —> 17 10 4 —> 16 5 —> 15 6 —> 14 7 —> 13 8
—> 12 9 —> 11 10 —> 10

answer

arglist: (subject dominant)

package: JBS-CMI
menu: Pitch
2.2 - ANSWER
This function is a simplified reproduction of the tonal answer of the fugue.
In [subject] you put a melodic profile.

A. BOX REFERENCE 51

In [dominant] you define (as nth index) which note of the profile has to be considered
as the dominant.
When you evaluate the ANSWER all the notes of the profile are transposed to the dom-
inant, except the dominant, that is transposed on the tonic.

arithm-ser-stop

arglist: (start step stop)

package: JBS-CMI
menu: Utilities
6.08 - ARITHMETIC-SER-STOP
This function creates an arithmetic series.
In [start] you set the starting point.
In [step] you set the step.
In [stop] you define how many step you want.

chaining-groups

arglist: (elements groups last-elmts)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.8 - CHAINING-GROUPS
This function creates chained sub groups. In [elements] you put the list you want to
chain. In [groups] you define the length of the subgroups.
In [last-elemts] you put how many last elements have to be in common between a group
and its follower. For instance if you put (1 1 1) between the first group and the second
there will be 1 common last element; the same between the second and the third; and
the same too between the third and the fourth. But if you put (1 4 2), that means that
between the first and the second group there will be 1 last common element; between
the second and the third there will be 4 last common elements; between the third and
the fourth there will be 2 last common elements.

circ-down-pitch

arglist: (list)
package: JBS-CMI
menu: All-PossibilitiesICircular
4.2.1 - CIRC-DOWN-PITCH
This function concerns pitches.
It creates all circular permutations of a given list of pitches. The specificity of this
function is that the each circular permutation is transposed on a LOWER octave from
the beginning one.

A. BOX REFERENCE 52

circ-up-pitch

arglist: (list)
package: JBS-CMI
menu: All-PossibilitiesICircular
4.2.2 - CIRC-UP-PITCH
This function concerns pitches.
It creates all circular permutations of a given list of pitches. The specificity of this
function is that the each circular permutation is transposed on a UPPER octave from the
beginning one.

circular-groups10

arglist: (list1 group1 list2 group2 list3 group3 list4 group4 list5 group5

list6 group6 list7 group7 list8 group8 list9 group9 list10 group10

global-permut?)

package: JBS-CMI
menu: All-PossibilitiesICircular
4.2.3 - CIRCULAR-GROUPS10
This function creates the circular permutation between at maximum 10 groups.
In the ten lists (list1, list2, list3, etc. list10) you can define the different elements. If
the corresponding menus (group1, group2, group3, etc. group10) are set on FIX-VAL?,
it means that the group will be repeated several time. If it set on PERMUT-VAL?, that
means that the group will have all its circular permutations.
As the lists can have different lengths (as it is in this example), the number of repetitions
of a group (if the corresponding menu is FIX-VAL?) depends on the longest list of all the
groups.
The same is for the circular permutations. The number of circular permutations of a
given group is repeated in order to get the length of the longest group treatment.
If the menu GLOBAL-PERMUT? is set on FIX-VAL?, that means that the treatment of
each list stays in the exact order following the numeration of the lists.
If the menu GLOBAL-PERMUT? is set on PERMUT)VAL?, that means that all the treat-
ments of all the lists are permutated in a circular way.

circular-lists-reading

arglist: (list-1 list-2)

package: JBS-CMI
menu: Utilities
6.04 - CIRCULAR-LIST-READING
This function allows you to synchronize the length of two lists.
If the lists set in [list-1] and [list-2] have the same length, it outputs the list set in [list-1]
If the length of [list-1] is smaller than the length of [list-2], it reads [list-1] in a circular
way till when the two lengths are equal.
If the length of [list-2] is smaller than the length of [list-1], it reads [list-2] in a circular
way till when the two lengths are equal.

A. BOX REFERENCE 53

complete-list

arglist: (list length)

package: JBS-CMI
menu: Utilities
6.06 - COMPLETE-LIST
This function looks if the length of the left [list] input is equal to the number put in the
right one [lenght].
If the length smaller, the function will repeat the last element of the list till when the
length is equal till the number set in the right input.

depth

arglist: (liste)
package: JBS-CMI
menu: Utilities
6.1 - DEPTH
This function outputs each element of a given list with the corresponding level of nest-
ing.

down-left-down-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the matrix reading in a diagonal way, going down from left to rigth while
going down through the matrix.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result: —> 1 —> 11 2 —> 111 22 3 —> 222 33 —> 333

down-right-up-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the matrix reading in a diagonal way, going down from left to rigth while
going down through the matrix.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 1 —> 2 11 —> 3 22 111 —> 33 222 —> 333

A. BOX REFERENCE 54

find-all-intervals

arglist: (chord)
package: JBS-CMI
menu: Utilities
6.11 - FIND-ALL-INTERVALS
This function comes from B. FERNEYHOUGH old PatchWork Library.
It calculates all the melodic intervals of a given list of pitches.

first-n

arglist: (list n)

package: JBS-CMI
menu: Utilities
n first elements of a list

for-max-coll

arglist: (list format?)

package: JBS-CMI
menu: Utilities
6.10 - SEVERAL-FOR-MAX-COLL
FOR-MAX-COLL
This function prepares a list like this one ((1 2 3) (a b c) (100 200 300)) in this format:
1, 1 2 3; 2, A B C; 3, 100 200 300;
ATTENTION: with the input FORMAT? you can choose either to print the result in the
PWGL output [to-listener], or to create a new file through a dialog box [to-file].

for-max-collect-name-and-index

arglist: (list1 list2 format?)

package: JBS-CMI
menu: Utilities
6.10 - SEVERAL-FOR-MAX-COLL
FOR-MAX-COLLECT-NAME-AND-INDEX
This function prepares one list like this one (start start start) in the following format:
START1; START2; START3;
ATTENTION: with the input FORMAT? [b] you can choose either to print the result in
the PWGL output [to-listener], or to create a new file through a dialog box [to-file].

for-max-special-coll

arglist: (list1 list2 format?)

package: JBS-CMI
menu: Utilities

A. BOX REFERENCE 55

6.10 - SEVERAL-FOR-MAX-COLL
FOR-MAX-SPECIAL-COLL
This function prepares two lists, this one ((1 2 3) (a b c) (100 200 300)) and this one
((5 6 7) (d e f) (11 22 33)), in the following format:
(1 2 3), (5 6 7); (A B C), (D E F); (100 200 300), (11 22 33);
ATTENTION: with the input FORMAT? you can choose either to print the result in the
PWGL output [to-listener], or to create a new file through a dialog box [to-file].

gold-section-multiplication

arglist: (number gr)

package: JBS-CMI
menu: Utilities
6.09 - GOLD-SECTION-MULTIPLICATION
This function creates a multiplication by the gold section value (0.618). It is a function
that can be recalled recursively.
In [number] you define a number you want to divide by the gold section factor.
In [gr] you can define which level of the recursion you want. With 1 you call the
function just one time; with 2 you apply the multiplication on the first value; with 3 you
apply the multiplication on the second value that is the multiplication of the first one,
and so on.

group-equals

arglist: (list)
package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.2 - GROUP-EQUALS
This function groups identical elements with consecutive identical elements.

group-list

arglist: (list groups mode?)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.1 - GROUP-LIST
This function can group a given list [list] into several groups whom lengths are specified
in [groups].
With the menu [mode?] you can: - stop - choose to finish the grouping action when
the starting list arrives at its end; - circ - choose to continue to read the list in a circular
way till when all the sub-group have been completed; - scale - choose to rescale propor-
tionally the lengths of the sub-groups in order to fit exactly in the length of the original
list.

A. BOX REFERENCE 56

grouping-excluding-given-element

arglist: (list element)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.6 - GROUPING-EXLUDING-GIVEN-ELEMENT This function groups a given list [list]
creating new subgroups: the given element set in [element] will be put into a separate
list, and the other elements in other lists.

grouping-including-given-element

arglist: (list element)

package: JBS-CMI
menu: Groups-SegmentationsIGroups
5.1.5 - GROUPING-INCLUDING-GIVEN-ELEMENT This function groups a given list [list]
creating new subgroups containing the given element set in [element]. That means that
all subgroups will start with the element set in [list].
ATTENTION: if the list does not start with the element set in [element], the first sub-
group will not contain this element.

harmonic-fields

arglist: (field)
package: JBS-CMI
menu: Pitch
This function allows you to define as defvar variables some list of chords and to recall
them in three different ways. First you have to define a set of chords.
Here is an example: (defvar major-triad ’((60 64 67) (61 65 68) (62 66 69) (63 67 70)
(64 68 71) (65 69 72) (66 70 73) (67 71 74)
(68 72 75) (69 73 76) (70 74 77) (71 75 78)))
Then you can recall the whole classes of chords with their 12 transpositions, just typing
the class name.
But you cane also recall one class with a specific transposition value. This value belongs
to the modulo 12 pitch result. For instance : (major-triad 11)
Or you can set a specific order to recall some transpositions of the two classes of chords.
Here is an example : ((major-triad 11) (o-a 1) (major-triad 2) (o-d 7)).
I’ve defined some classes chosen by my own taste: these calsses come out of E. Carter,
K. Stockhausen, I. Fedele, and some of myself.
Here they are:
(defvar wood ’(64 67 74 71 77))
(defvar -4-5-a ’((60 61 62 64) (61 62 63 65) (62 63 64 66) (63 64 65 67) (64 65 66
68)
(65 66 67 69) (66 67 68 70) (67 68 69 71) (68 69 70 72) (69 70 71 73)
(70 71 72 74) (71 72 73 75)))
(defvar -4-5-b ’((60 61 63 64) (61 62 64 65) (62 63 65 66) (63 64 66 67) (64 65 67
68)

A. BOX REFERENCE 57

(65 66 68 69) (66 67 69 70) (67 68 70 71) (68 69 71 72) (69 70 72 73)
(70 71 73 74) (71 72 74 75)))
(defvar -4-5-c ’((60 62 63 64) (61 63 64 65) (62 64 65 66) (63 65 66 67) (64 66 67
68)
(65 67 68 69) (66 68 69 70) (67 69 70 71) (68 70 71 72) (69 71 72 73)
(70 72 73 74) (71 73 74 75)))
(defvar -3-6-a ’((60 61 62 67) (61 62 63 68) (62 63 64 69) (63 64 65 70) (64 65 66
71)
(65 66 67 72) (66 67 68 73) (67 68 69 74) (68 69 70 75) (69 70 71 76)
(70 71 72 77) (71 72 73 78)))
(defvar -3-6-b ’((60 61 66 67) (61 62 67 68) (62 63 68 69) (63 64 69 70) (64 65 70
71)
(65 66 71 72) (66 67 72 73) (67 68 73 74) (68 69 74 75) (69 70 75 76)
(70 71 76 77) (71 72 77 78)))
(defvar o-a ’((60 61 63 67) (61 62 64 68) (62 63 65 69) (63 64 66 70) (64 65 67 71)
(65 66 68 72) (66 67 69 73) (67 68 70 74) (68 69 71 75) (69 70 72 76)
(70 71 73 77) (71 72 74 78)))
(defvar o-b ’((60 61 64 66) (61 62 65 67) (62 63 66 68) (63 64 67 69) (64 65 68 70)
(65 66 69 71) (66 67 70 72) (67 68 71 73) (68 69 72 74) (69 70 73 75)
(70 71 74 76) (71 72 75 77)))
(defvar o-c ’((60 62 65 66) (61 63 66 67) (62 64 67 68) (63 65 68 69) (64 66 69 70)
(65 67 70 71) (66 68 71 72) (67 69 72 73) (68 70 73 74) (69 71 74 75)
(70 72 75 76) (71 73 76 77)))
(defvar o-d ’((60 64 66 67) (61 65 67 68) (62 66 68 69) (63 67 69 70) (64 68 70 71)
(65 69 71 72) (66 70 72 73) (67 71 73 74) (68 72 74 75) (69 73 75 76)
(70 74 76 77) (71 75 77 78)))
(defvar -4-a ’((60 61 62 63 65) (61 62 63 64 66) (62 63 64 65 67) (63 64 65 66 68)
(64 65 66 67 69) (65 66 67 68 70) (66 67 68 69 71) (67 68 69 70 72)
(68 69 70 71 73) (69 70 71 72 74) (70 71 72 73 75) (71 72 73 74 76)))
(defvar -4-b ’((60 61 62 64 65) (61 62 63 65 66) (62 63 64 66 67) (63 64 65 67 68)
(64 65 66 68 69) (65 66 67 69 70) (66 67 68 70 71) (67 68 69 71 72)
(68 69 70 72 73) (69 70 71 73 74) (70 71 72 74 75) (71 72 73 75 76)))
(defvar -4-c ’((60 61 63 64 65) (61 62 64 65 66) (62 63 65 66 67) (63 64 66 67 68)
(64 65 67 68 69) (65 66 68 69 70) (66 67 69 70 71) (67 68 70 71 72)
(68 69 71 72 73) (69 70 72 73 74) (70 71 73 74 75) (71 72 74 75 76)))
(defvar -4-d ’((60 62 63 64 65) (61 63 64 65 66) (62 64 65 66 67) (63 65 66 67 68)
(64 66 67 68 69) (65 67 68 69 70) (66 68 69 70 71) (67 69 70 71 72)
(68 70 71 72 73) (69 71 72 73 74) (70 72 73 74 75) (71 73 74 75 76)))
(defvar crom-up ’(60 61 62 63 64 65 66 67 68 69 70 71))
(defvar crom-down ’(71 70 69 68 67 66 65 64 63 62 61 60))
(defvar 4-up ’((60 65 70 75 68 73 78 71 64 69 62 67)
(61 66 71 76 69 74 79 72 65 70 63 68)
(61 66 71 76 69 74 79 72 65 70 63 68)
(62 67 72 77 70 75 80 73 66 71 64 69)
(63 68 73 78 71 76 81 74 67 72 65 70)

A. BOX REFERENCE 58

(64 69 74 79 72 77 82 75 68 73 66 71)
(65 70 75 80 73 78 83 76 69 74 67 72)
(66 71 76 81 74 79 84 77 70 75 68 73)
(67 72 77 82 75 80 85 78 71 76 69 74)
(68 73 78 83 76 81 86 79 72 77 70 75)
(69 74 79 84 77 82 87 80 73 78 71 76)
(70 75 80 85 78 83 88 81 74 79 72 77)
(71 76 81 86 79 84 89 82 75 80 73 78)
))
(defvar 4< ’((36 41 46 51 56 61 66 71 76 81 86 91 96)
(37 42 47 52 57 62 67 72 77 82 87 92 97)
(38 43 48 53 58 63 68 73 78 83 88 93 98)
(39 44 49 54 59 64 69 74 79 84 89 94 99)
(40 45 50 55 60 65 70 75 80 85 90 95 1)
(41 46 51 56 61 66 71 76 81 86 91 96 101)
(42 47 52 57 62 67 72 77 82 87 92 97 102)
(43 48 53 58 63 68 73 78 83 88 93 98 103)
(44 49 54 59 64 69 74 79 84 89 94 99 104)
(45 50 55 60 65 70 75 80 85 90 95 1 105)
(46 51 56 61 66 71 76 81 86 91 96 101 106)
(47 52 57 62 67 72 77 82 87 92 97 102 107)
))
(defvar 5-up ’((60 67 74 69 76 71 66 61 68 63 70 65)
(61 68 75 70 77 60 67 62 69 64 71 66)
(62 69 76 71 78 61 68 63 70 65 60 67)
(63 70 77 72 67 62 69 64 71 66 61 68)
(64 71 78 73 68 63 70 65 60 67 62 69)
(65 72 79 74 69 64 71 66 61 68 63 70)
(66 73 68 75 70 65 60 67 62 69 64 71)
(67 74 69 76 71 66 61 68 63 70 65 60)
(68 75 70 77 60 67 62 69 64 71 66 61)
(69 76 71 78 61 68 63 70 65 60 67 62)
(70 77 72 67 62 69 64 71 66 61 68 63)
(71 78 73 68 63 70 65 60 67 62 69 64)
))
(defvar 5< ’((36 43 50 57 64 71 78 85 92 99 106 113 120)
(37 44 51 58 65 72 79 86 93 1 107 114 121)
(38 45 52 59 66 73 80 87 94 101 108 115 122)
(39 46 53 60 67 74 81 88 95 102 109 116 123)
(40 47 54 61 68 75 82 89 96 103 110 117 124)
(41 48 55 62 69 76 83 90 97 104 111 118 125)
(42 49 56 63 70 77 84 91 98 105 112 119 126)
(43 50 57 64 71 78 85 92 99 106 113 120 127)
(44 51 58 65 72 79 86 93 1 107 114 121 128)
(45 52 59 66 73 80 87 94 101 108 115 122 129)

A. BOX REFERENCE 59

(46 53 60 67 74 81 88 95 102 109 116 123 130)
(47 54 61 68 75 82 89 96 103 110 117 124 131)
))
(defvar octphone ’((60 61 63 64 66 67 69 70)
(61 62 64 65 67 68 70 71)
(62 63 65 66 68 69 71 72)))
(defvar enphone ’((60 61 62 64 65 66 68 69 70)
(61 62 63 65 66 67 69 70 71)
(62 63 64 66 67 68 70 71 72)
(63 64 65 67 68 69 71 72 73)
))
(defvar pentaton-a ’((60 61 65 69 70)
(61 62 66 70 71)
(62 63 67 71 72)
(63 64 68 72 73)
(64 65 69 73 74)
(65 66 70 74 75)
(66 67 71 75 76)
(67 68 72 76 77)
(68 69 73 77 78)
(69 70 74 78 79)
(70 71 75 79 68)
(71 72 76 68 69)
))
(defvar pentaton-b ’((60 61 63 65 66)
(61 62 64 66 67)
(62 63 65 67 68)
(63 64 66 68 69)
(64 65 67 69 70)
(65 66 68 70 71)
(66 67 69 71 72)
(67 68 70 72 73)
(68 69 71 73 74)
(69 70 72 74 75)
(70 71 73 75 76)
(71 72 74 76 77)
))
(defvar octotone ’((60 62 64 65 66 68 70 71)
(61 63 65 66 67 69 71 72)
(62 64 66 67 68 70 72 73)
(63 65 67 68 69 71 73 74)
(64 66 68 69 70 72 74 75)
(65 67 69 70 71 73 75 76)
))
(defvar eptatone-a ’((60 63 64 65 67 68 69 72)

A. BOX REFERENCE 60

(61 64 65 66 68 69 70 73)
(62 65 66 67 69 70 71 74)
(63 66 67 68 70 71 72 75)
(64 67 68 69 71 72 73 76)
(65 68 69 70 72 73 74 77)
(66 69 70 71 73 74 75 78)
(67 70 71 72 74 75 76 79)
(68 71 72 73 75 76 77 68)
(69 72 73 74 76 77 78 69)
(70 73 74 75 77 78 79 70)
(71 74 75 76 78 79 68 71)
))
(defvar eptatone-b ’((60 61 62 65 67 70 71 72)
(61 62 63 66 68 71 72 73)
(62 63 64 67 69 72 73 74)
(63 64 65 68 70 73 74 75)
(64 65 66 69 71 74 75 76)
(65 66 67 70 72 75 76 77)
(66 67 68 71 73 76 77 78)
(67 68 69 72 74 77 78 79)
(68 69 70 73 75 78 79 68)
(69 70 71 74 76 79 68 69)
(70 71 72 75 77 68 69 70)
(71 72 73 76 78 69 70 71)
))
(defvar openton-5 ’((36 38 40 42 43 45 47 49 50 52 54 56
57 59 61 63 64 66 68 70 71 73 75 77
78 68 70 72 73 75 77 55 56 58 60 62
63 65 43 45 46 48 50 52 53 43 45 47
36)
(36 37 39 40 42 43 44 46 47 49 50 51
53 54 56 57 58 60 61 63 64 65 67 68
70 71 72 74 75 77 78 79 69 70 72 73
74 76 77 55 56 57 59 60 62 63 64 66
43 45 46 47 49 50 52 53 54 44 45 47
36)
(36 38 39 41 42 43 45 46 48 49 50 52
53 55 56 57 59 60 62 63 64 66 67 69
70 71 73 74 76 77 78 68 69 71 72 73
75 76 78 55 56 58 59 61 62 63 65 66
44 45 46 48 49 51 52 53 43 44 46 47
36)
))
(defvar openton-4 ’((36 38 40 41 43 45 46 48 50 51 53 55
56 58 60 61 63 65 66 68 70 71 73 75

A. BOX REFERENCE 61

76 78 68 69 71 73 74 76 78 55 57 59
60)
(36 37 39 40 41 42 44 45 46 47 49 50
51 52 54 55 56 57 59 60 61 62 64 65
66 67 69 70 71 72 74 75 76 77 79 68
69 70 72 73 74 75 77 78 55 56 58 59
60)
(36 37 39 41 42 44 46 47 49 51 52 54
56 57 59 61 62 64 66 67 69 71 72 74
76 77 79 69 70 72 74 75 77 55 56 58
60)
))
(defvar piram-> ’((36 47 57 66 74 81 87 92 96 99 101 102)
(37 48 58 67 75 82 88 93 97 1 102 103)
(38 49 59 68 76 83 89 94 98 101 103 104)
(39 50 60 69 77 84 90 95 99 102 104 105)
(40 51 61 70 78 85 91 96 1 103 105 106)
(41 52 62 71 79 86 92 97 101 104 106 107)
(42 53 63 72 80 87 93 98 102 105 107 108)
(43 54 64 73 81 88 94 99 103 106 108 109)
(44 55 65 74 82 89 95 1 104 107 109 110)
(45 56 66 75 83 90 96 101 105 108 110 111)
(46 57 67 76 84 91 97 102 106 109 111 112)
(47 58 68 77 85 92 98 103 107 110 112 113)
))
(defvar piram-< ’((36 37 39 42 46 51 57 64 72 81 91 102)
(37 38 40 43 47 52 58 65 73 82 92 103)
(38 39 41 44 48 53 59 66 74 83 93 104)
(39 40 42 45 49 54 60 67 75 84 94 105)
(40 41 43 46 50 55 61 68 76 85 95 106)
(41 42 44 47 51 56 62 69 77 86 96 107)
(42 43 45 48 52 57 63 70 78 87 97 108)
(43 44 46 49 53 58 64 71 79 88 98 109)
(44 45 47 50 54 59 65 72 80 89 99 110)
(45 46 48 51 55 60 66 73 81 90 1 111)
(46 47 49 52 56 61 67 74 82 91 101 112)
(47 48 50 53 57 62 68 75 83 92 102 113)
))
(defvar majour-scale ’(
(60 62 64 65 67 69 71)
(61 63 65 66 68 70 72)
(62 64 66 67 69 71 73)
(63 65 67 68 70 72 74)
(64 66 68 69 71 73 75)
(65 67 69 70 72 74 76)

A. BOX REFERENCE 62

(66 68 70 71 73 75 77)
(67 69 71 72 74 76 78)
(68 70 72 73 75 77 79)
(69 71 73 74 76 78 68)
(70 72 74 75 77 79 69)
(71 73 75 76 78 68 70)))
(defvar minor-scale ’(
(60 62 63 65 67 68 70)
(61 63 64 66 68 69 71)
(62 64 65 67 69 70 72)
(63 65 66 68 70 71 73)
(64 66 67 69 71 72 74)
(65 67 68 70 72 73 75)
(66 68 69 71 73 74 76)
(67 69 70 72 74 75 77)
(68 70 71 73 75 76 78)
(69 71 72 74 76 77 79)
(70 72 73 75 77 78 68)
(71 73 74 76 78 79 69)))
(defvar minor-triad ’((60 63 67) (61 64 68) (62 65 69) (63 66 70)
(64 67 71) (65 68 72) (66 69 73) (67 70 74)
(68 71 75) (69 72 76) (70 73 77) (71 74 78)))
(defvar major-triad ’((60 64 67) (61 65 68) (62 66 69) (63 67 70)
(64 68 71) (65 69 72) (66 70 73) (67 71 74)
(68 72 75) (69 73 76) (70 74 77) (71 75 78)))

index-substitute

arglist: (list indexes elements)

package: JBS-CMI
menu: Utilities
6.07 - INDEX-SUBSTITUTE
This function allows you to replace a list of elements giving the nth positions.
In [list] you put a list.
In [indexes] you define where you want to make a substitution. The values here corre-
spond to nth indexes. So 0 is the index if for the first element, 1 for the second, 2 for
the third and so on.
In [elements] you put the elements that will be put in the given nth indexes set in
[indexes]

last-n

arglist: (list n)

package: JBS-CMI
menu: Utilities

A. BOX REFERENCE 63

n last elements of a list

left-down-diagonal-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It reads the matrix through its diagonal, starting to the last element of the first line to
the first element of the last line. Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result: —> 111 —> 22 —> 3

left-up-diagonal-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It reads the matrix through its diagonal, starting to the first element of the first line to
the last element of the last line.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result: —> 333 —> 22 —> 1

maximum-segmentation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology 5.2.1 - MAXIMUM-MINIMUM-SEGMENTATIONS
(To better understand this function, please look also in mathematics, maxima and min-
ima, known collectively as extrema.)
The function MAXIMUM-SEGMNTATION creates a segmentation based on the primitive
forms of a given list of numbers. ATTENTION: this function works only with numbers
(not with symbols). It creates a separate group of lists segmented before and after a
point of maximum.

member-in-sublists?

arglist: (item-or-items lists mode)

package: JBS-CMI
menu: Utilities
6.3 - MEMBER-IN-SUBLISTS?
This function is a sort of general member test. It outputs T or NIL.

A. BOX REFERENCE 64

In [item-or-items] you put the element you want to be checked as included or excluded.
In [lists] you put a list where to check if the item set in [item-or-items] is found or not.
With the menu MODE you can choose between four different tests: - with EVERY this
function puts T if the element set in [item-or-items] is in all sub lists; - with SOME or
NOTEVERY this function puts T if the element set in [item-or-items] is in certain sub
lists; - with NOTANY this function puts T if the element set in [item-or-items] is NOT in
any sub lists.

minimum-segmentation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology
5.2.1 - MAXIMUM-MINIMUM-SEGMENTATIONS
(To better understand this function, please look also in mathematics, maxima and min-
ima, known collectively as extrema.)
The function MINIMUM-SEGMNTATION creates a segmentation based on the primitive
forms of a given list of numbers. ATTENTION: this function works only with numbers.
It creates a separate group of lists segmented before and after a point of minimum.

numeric-comment

arglist: (list gr)

package: JBS-CMI
menu: MatrixINumeric-Comment
3.1.1 - NUMERIC-COMMENT
(Also know as Look-and-say sequence by John Horton Conway)
This function reproduces the Look-and-say sequence as shown.
Put 1 in [list] and choose which level of recursion you want to use with [gr].
To generate a member of the sequence from the previous member, read off the digits of
the previous member, counting the number of digits in groups of the same digit.
For example:
1 is read off as ’one 1’ or 11. 11 is read off as ’two 1’s’ or 21. 21 is read off as ’one
2, then one 1’ or 1211. 1211 is read off as ’one 1, then one 2, then two 1’ or 111221.
111221 is read off as ’three 1, then two 2, then one 1’ or 312211.

numeric-comment-sort

arglist: (list gr)

package: JBS-CMI
menu: MatrixINumeric-Comment
3.1.2 - NUMERIC-COMMENT-SORT
This is a variation of the Look-and-say sequence by John Horton Conway.
Put 1 in [list] and choose which level of recursion you want to use with [gr].

A. BOX REFERENCE 65

To generate a member of the sequence from the previous member, read off the digits of
the previous member, counting the number of digits in groups of the same digit., BUT
STARTING ALWAYS FROM THE SUM OF MORE LITTLE NUMBER TO THE BIGGER
ONE.
1 is read off as ’one 1’ or 11. 11 is read off as ’two 1’s’ or 21. NOW SEE THE DIFFERENCE
21 is read off STARTING FROM THE MORE LITTLE NUMBER THAT IS 1 SO: as ’ one 1’
then one 2’ or 1112. THEN AGAIN SARTING FROM THE MORE LITTLE: 1112 is read
off as ’three 1, then one 2’ or 3112. THEN AGAIN SARTING FROM THE MORE LITTLE:
3112 is read off as ’two 1, then one 2, then one 3’ or 211213. THEN AGAIN SARTING
FROM THE MORE LITTLE: 211213 is read off as ’three 1, then two 2, then two 3’ or
312213. And so on.
A special property: After a while all sequences become the comment of themselves. Try
to make the comment of this one: 2 1 3 2 2 3 1 4.

on-new-segmnetation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology
5.2.2 - ON-NEW-OLD-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)
The ON-NEW-SEGMENTATION creates a group on each NEW incoming element. To
create this segmentation, it creates a group excluding the NEW element and another
group including it.

on-new/new-old/analysis-segmentation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology
5.2.3 - ON-NEW-OR-OLD-NEW/OLD-ANALYSIS-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)
The ON-NEW/NEW-OLD-ANALYSIS-SEGMENTATION creates a new group on each
NEW element coming out of the NEW-OLD-ANALYSIS iof the given list.

on-old-segmnetation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology
5.2.2 - ON-NEW-OLD-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)

A. BOX REFERENCE 66

The ON-OLD-SEGMNTATION creates a group on each OLD element appearing in the
given list.

on-old/new-old/analysis-segmentation

arglist: (list)
package: JBS-CMI
menu: GroupsISegmentations
From PAolo Aralla MusicTopology
5.2.3 - ON-NEW-OR-OLD-NEW/OLD-ANALYSIS-SEGMENTATIONS
(These two functions refer to the morphology theory developed by Paolo Aralla.)
The ON-OLD/NEW-OLD-ANALYSIS-SEGMENTATION creates a new group on each OLD
element coming out of the NEW-OLD-ANALYSIS of the given list.

order-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
Probably quite a stupid function: it just gives back the matrix in the same order (list
of lists) as it is. It’s usefull in order to compare with the other functions that read the
matrix.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 1 11 111 —> 2 22 222 —> 3 33 333

print-lists

arglist: (list)
package: JBS-CMI
menu: Reading-MatrixIPrinting-Lists-&-Matrix
It prints out in the listener in a more readable way.

print-matrix

arglist: (list)
package: JBS-CMI
menu: Reading-MatrixIPrinting-Lists-&-Matrix
It prints in the listener in a matrix redeable format.

A. BOX REFERENCE 67

reverse-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the last line up to the first, keeping the same order of elements, inside each
lines.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 3 33 333 —> 2 22 222 —> 1 11 111

reversed-order-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the first line down to the last, reversing the order of elements, inside each
lines.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 111 11 1 —> 222 22 2 —> 333 33 3

reversed-order-reverse-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the last line up to the first, reversing the order of elements, inside each
lines.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 333 33 3 —> 222 22 2 —> 111 11 1

right-down-diagonal-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It reads the matrix through its diagonal, starting to the first element of the first line to
the last element of the last line.

A. BOX REFERENCE 68

Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result: —> 1 —> 22 —> 333

right-up-diagonal-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It reads the matrix through its diagonal, starting to the last element of the first line to
the first element of the last line. Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result: —> 3 —> 22 —> 111

tree-extract

arglist: (structure index)

package: JBS-CMI
menu: Utilities
6.2 - TREE-EXTRACT
This function is a sort a recursive nth.
In [structure] you put a list of lists. In [index] you define the nth of the nth. For instance
if you put (1 1), that means that you want to extract the second (nth 1) of the second
(nth1).

up-left-down-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix
It gives back the matrix reading in a diagonal way, going up from right to left while
going down through the matrix.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 333 —> 222 33 —> 111 22 3 —> 11 2 —> 1

up-right-up-reading-matrix

arglist: (list)
package: JBS-CMI
menu: MovingIReading-Matrix

A. BOX REFERENCE 69

It gives back the matrix reading in a diagonal way, going up from right to left while
going down through the matrix.
Here is a very simple matrix:
BEGIN-OF-MATRIX 0 1 2 3 1, 1 11 111 2, 2 22
222 3, 3 33 333 END-OF-MATRIX
Here is the result:
—> 333 —> 33 222 —> 3 22 111 —> 2 11 —> 1

write-grace-note-music-entity

arglist: (rhythm pitches note-expressions grace-notes where?

grace-note-expressions)

package: JBS-CMI
menu: Write-Music-Entities
1.2 - WRITE-GRACE-NOTE-MUSIC-ENTITY
(Sorry, not so elegant this one...)
This function allows you to write in a simple mode a rhythmical sequence (using
rhythm tree structures) synchronised with pitches and music expressions and inserting
sequences of grace notes having music expressions too.
In [rhythm] you set the rhythm tree structure: in this example it is (1 1 1 1), that means
that the measure will be divided in 4 equal pulses.
In [pitches] you set the corresponding pitches.
FIRST ATTENTION: if the number of pitches is smaller than the number of pulses, the
last pitch will be repeated in order to get the same length of pulses. If the number of
pulses is smaller than the number of pitches, the last pulse will be repeated to get the
same length of the pitches.
In [note-expressions] you can define which music expression you want to be synchro-
nized with pulses and pitches.
Syntactically the expressions have to be inside a parenthesis as shown: (:mf) or
(:accent); but also like this: ((:accent :crescendo1) (:crescendo1) (:crescendo1)
(:crescendo1 :sf)) (Please see the PWGL help and the 02-enp-constructor patch in order
to learn how many ENP expressions are.)
SECOND ATTENTION: if the number of expression is smaller than the number of pulses
or of pitches the last expression will be repeated in order to get the same length of
pitches.
In [grace-notes] you can enter either a flat list of pitches (in this case it will consider as
a single group of grace notes) or a list of lists of pitches (in this case each sub list will
be considered as a separate group of grace notes).
In [where?] you have to define where the grace notes are appended. If you put 0,
that means that the grace notes will appended to the nth 0 (the first) note you put in
[rhythm]; if you put 1 it will be in the second place, 2 in the third and so on.
In [grace-note-expressions] you can define the grace note single group or a list of
groups.
With this function: - you can decide single nth positions or groups of nth positions; - you
can control if you have a single group of grace note or groups (a LIST of LISTS) of grace

A. BOX REFERENCE 70

notes; - you can choose the NOTES expressions; - you can choose the GRACE-NOTES
expressions.
NOTE THIS: - In [where?] if you put a single number and in [grace-note-expressions]
you have set a list of groups, only the group corresponding to with the nth in [3] will be
chosen. - In [where?] if you have chosen a group of nth and in [grace-note-expressions]
you have set only a group of grace notes, only this last one will be printed in the score
in the first nth group set in [where?].
- In [note-expressions] you have multiple choices (the behaviour for NOTE expressions).
1 - if you use a single expression like (:fff) this one will be propagated to all notes; 2
- if you use a flat list of expressions like (:sf :accent) the list will associate (:sf) to the
first note, and (:accent) for all other notes; 3 - if you use a single list of list like ((:sf
:accent)) the double expression (:sf :accent) will be propagated to all notes; 4 - if you
use a list of separate sub lists like ((:p) (:fermata :accent)) and the length of notes is
bigger, the last expression - in this case (:fermata :accent) - will be propagated till the
last note; 5 - if you use a list of separate sub lists like ((:p) (:f) (:mf) (:fermata :accent))
and the number of lists is equal to the length of notes, for each note you have a specific
expression.
- In [grace-note-expressions] you have multiple choices (the behaviour for GRACE-
NOTE expressions) ATTENTION: this behaviour is similar to NOTE expression but not
exactly the same. 1 - if you use a single expression like (:fff) this one will be propa-
gated to all grace-notes; 2 - if you use a single list of list like (:sf :accent) the double
expression (:sf :accent) will be propagated to all grace-notes; 4 - if you use a list of
separate sub lists like ((:mf) (:accent :slur1)) and the length of notes is bigger than
the length of expressions, the whole group of expressions will be propagated till the
last grace-note. ATTENTION: if the length of the sub-group grace-notes is smaller than
the list of expressions, the list will stop accordingly to the length of the grace-note sub
group. ATTENTION TOO: if the length of a sub group is bigger than the length of the
expression list, the last expression will be propagated to the last grace-note. 5 - if you
use a list of separate sub lists like ((:mf) (:accent) (:slur1 :crescendo1) (:crescendo1)
(:crescendo1 :ff)) and the number of lists is equal to the length of grace-note list, for
each grace-note you have a specific expression.

write-music-entity

arglist: (rhythm pitches note-expressions)

package: JBS-CMI
menu: Write-Music-Entities
1.1 - WRITE-MUSIC-ENTITY
This function allows you to write in a simple mode a rhythmical sequence (using rhythm
tree structures) synchronised with pitches and music expressions.
In [rhythm] you set the rhythm tree structure: in this example it is (1 1 1 1), that means
that the measure will be divided in 4 equal pulses.
In [pitches] you set the corresponding pitches.
FIRST ATTENTION: if the number of pitches is smaller than the number of pulses, the
last pitch will be repeated in order to get the same length of pulses. If the number of

A. BOX REFERENCE 71

pulses is smaller than the number of pitches, the last pulse will be repeated to get the
same length of the pitches.
In [note-expressions] you can define which music expression you want to be synchro-
nized with pulses and pitches. Syntactically the expressions have to inside a parenthesis
as shown: (:mf) or (:accent); but also like this: ((:accent :crescendo1) (:crescendo1)
(:crescendo1) (:crescendo1 :sf)) (Please see the PWGL help to learn how many ENP
expressions are.)
SECOND ATTENTION: if the number of expression is smaller than the number of pulses
or of pitches the last expression will be repeated in order to get the same length of
pitches.

Box Index
Abstraction, 5, 6, 8–10, 26
all-combinations, 20
all-given-sub-groups, 30
all-groups-by-all-elements, 33
all-permutations, 21
all-rotations, 22
all-sub-groups, 29
all-to-one, 15
all-to-x, 16
answer, 12
arithm-ser-stop, 45

chaining-groups, 34
Chord-Editor, 5, 8, 11, 12, 23, 24, 48
circ-down-pitch, 23
circ-up-pitch, 24
circular-groups10, 26
circular-lists-reading, 41
comment-box, 5, 6, 8, 9, 11–19, 23, 24,

26–39, 41–48
complete-list, 43

depth, 38
down-left-down-reading-matrix, 17
down-right-up-reading-matrix, 17

enp-object-composer, 5

find-all-intervals, 48
first, 8
first-n, 42
for-max-coll, 47
for-max-collect-name-and-index, 47
for-max-special-coll, 47

gold-section-multiplication, 46
group-equals, 28
group-list, 27
grouping-excluding-given-element, 32
grouping-including-given-element, 31

harmonic-fields, 11

index-substitute, 44

last-n, 42
left-down-diagonal-reading-matrix, 17
left-up-diagonal-reading-matrix, 17
list, 5, 8

maximum-segmentation, 35
minimum-segmentation, 35

num-box, 5, 8
numeric-comment, 13
numeric-comment-sort, 14

on-new-segmnetation, 36
on-new/new-old/analysis-segmentation,

37
on-old-segmnetation, 36
on-old/new-old/analysis-segmentation,

37
order-reading-matrix, 17

print-lists, 13–16, 18, 26
print-matrix, 17, 19
pwgl-enum, 6, 9, 13, 14, 30
pwgl-map, 6, 9, 13, 14, 30
pwgl-switch, 5, 8, 11, 17, 31, 34, 41

reverse-reading-matrix, 17
reversed-order-reading-matrix, 17
reversed-order-reverse-reading-matrix, 17
right-down-diagonal-reading-matrix, 17
right-up-diagonal-reading-matrix, 17

Score-Editor, 5, 6, 8, 9

text-box, 5, 6, 8, 9, 11–17, 26, 27, 30–34,
39, 41, 42, 44–47

tree-extract, 39

up-left-down-reading-matrix, 17
up-right-up-reading-matrix, 17

value-box, 5, 6, 8, 9, 11, 13, 14, 17–19, 26,
27, 31–34, 39, 41

write-grace-note-music-entity, 8, 9
write-music-entity, 5, 6

72

	Start-Here
	0-Write-Music-Entities
	0-Write-Entities
	1-Write-Music-Entity
	1-Write-Music-Entity
	2-Write-Grace-Note-Music-Entity
	1-Write-Grace-Note-Music-Entity
	3-Write-Grace-Note-Music-Entity

	0-Pitch
	0-Pitch
	1-Harmonic-Fields
	2-Answer

	0-Matrix
	0-Matrix
	0-Numeric-Comment
	1-Numeric-Comment
	2-Numeric-Comment-Sort

	0-Moving
	1-All-to-1
	2-All-to-X

	0-Reading-Matrix
	1-All-Reading-Matrix

	0-Print-List-Matrix
	2-Print-Lists
	3-Print-Matrix

	0-Special-Combinations
	0-Special-Combinations
	1-All-Possibilities
	1-All-Combinations
	2-All-Permutations
	3-All-Rotations

	2-Circular
	1-Circ-down-Picth
	2-Circ-up-Pitch
	3-Circular-Groups10

	0-Grouping
	0-Grouping
	1-Groups
	1-Group-List
	2-Group-Equals
	3-All-Sub-Groups
	4-All-Given-Sub-Groups
	5-Grouping-Including-Given
	6-Grouping-excluding-Given
	7-All-Groups-by-All-Elements
	8-Mixing-List-Groups

	2-Segmentations
	1-Up-down-Peaks-Segmentation
	2-On-New-or-on-Old-Segmentation
	3-On-New-or-Old-on-New&Old-Segmentation

	0-Utilities
	0-Utils
	01-Depth
	02-Tree-Extract
	03-Member-in-Sublists?
	04-Circular-Reading
	05-First-N &-Last-N
	06-Complete-List
	07-Index-Subst
	08-Arithmetic-Serie-Stop
	09-Gold-Section
	10-Several-for-Max-Coll
	11-Find-All-Intervals

	Box Reference
	Box Index

